-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 223
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Попробуем подсчитать в точке 1, у1, z1) скалярный по­тенциал j(1), создаваемый точечным зарядом (вроде электро­на), движущимся любым, каким угодно образом. Под «точеч­ным» зарядом подразумевается очень маленький заряженный шарик, такой маленький, как только можно себе представить, с плотностью заряда р(х, у, z). Потенциал j можно найти из (21.15):

Фейнмановские лекции по физике. 6. Электродинамика - _391.jpg

(21.28)

На первый взгляд кажется (и почти все так и подумают), что ответ состоит в том, что интеграл от r по такому «точечному» заряду равен просто общему заряду q, т. е. что

Фейнмановские лекции по физике. 6. Электродинамика - _392.jpg

Через r'12здесь обозначен радиус-вектор от заряда в точке (2) к точке (7), измеренный в более раннее время (t—r12/c). Эта формула ошибочна.

Фейнмановские лекции по физике. 6. Электродинамика - _393.jpg

Фиг. 21.5. «Точечный» заряд (рассматриваемый как неболь­шое распределение зарядов в форме куба), движущийся со скоростью v к точке (1).

Правильный ответ такой:

Фейнмановские лекции по физике. 6. Электродинамика - _394.jpg

(21.29)

где vr'компонента скорости заряда, параллельная r12, т. е. направленная к точке (1). Сейчас я объясню, почему это так. Чтобы легче было следить за моими доводами, я сперва проведу расчет для «точечного» заряда в форме небольшого заряженного кубика, который движется к точке (1) со ско­ростью v(фиг. 21:5). Сторона куба будет а, это число пусть будет много меньше r12 [расстояния от центра заряда до точки (1)].

Чтобы оценить величину интеграла (21.28), мы вернемся к основному определению: запишем его в виде суммы

Фейнмановские лекции по физике. 6. Электродинамика - _395.jpg

(21.30)

где riрасстояние от точки (1) к i-му элементу объема DVi, а ri-— плотность заряда в DVi в момент ti=(t-ri/с). Поскольку все ri>>а, удобно будет выбрать все DVi в виде тонких прямо­угольных ломтиков, перпендикулярных к r12 (фиг. 21.6).

Предположим, что мы начали с того, что взяли элементы объема DVi некоторой толщины w, много меньшей а.

Отдельные элементы объема будут выглядеть так, как по­казано на фиг. 21.7, а. Их нарисовано гораздо больше, чем нужно, чтобы закрыть весь заряд. А сам заряд не показан, и по весьма существенной причине. Где его нужно нарисовать? Ведь для каждого элемента объема DVi надо брать r в свой момент t~(t-r/с). Но раз заряд движется, то для каждого элемента объема DVi он окажется в другом месте!

Фейнмановские лекции по физике. 6. Электродинамика - _396.jpg

Начнем, скажем, с элемента объема 1 на фиг. 21.7, а, выбранного так, чтобы в момент tl = (t-r1/с) «задняя» грань заряда пришлась на DVi (фиг, 21.7, б).

Фиг. 21.6, Элемент объема DVi, используемый для вычисления потенциалов.

Фейнмановские лекции по физике. 6. Электродинамика - _397.jpg

Фиг. 21.7. Интегрирование r(t-r'/c)dV для движущегося заряда.

Тогда, вычисляя r2DV2, нужно взять положение заряда в несколько более позд­нее время t2=(t- r2/c) и заряд к этому времени сместится в по­ложение, показанное на фиг. 21.7, в. Так же будет с DV3, DV4 и т. д. Вот теперь можно подсчитывать сумму.

Фейнмановские лекции по физике. 6. Электродинамика - _398.jpg

Толщина каждого DVi- равна w, а объем wa2. Поэтому каж­дый элемент объема, накладывающийся на распределение заряда, содержит в себе заряд wa2r, где r — плотность заряда внутри куба (мы считаем ее однородной). Когда расстояние от заряда до точки (1) велико, то можно все ri в знаменателях по­ложить равными некоторому среднему значению, скажем, взятому с учетом запаздывания положению r' центра куба. Сумма (21.30) превращается в

где DVN—тот последний элемент DVi, который еще накла­дывается на распределение зарядов (см. фиг. 21.7, д). Сумма тем самым равна

Фейнмановские лекции по физике. 6. Электродинамика - _399.jpg

Фейнмановские лекции по физике. 6. Электродинамика - _400.jpg

Но ra3 — просто общий заряд q, a Nw—длина b, показанная на фиг. 21.7, д. Получается

(21.31)

Фейнмановские лекции по физике. 6. Электродинамика - _401.jpg

А чему же равно b? Это длина куба зарядов, увеличенная на расстояние, пройденное зарядом за время от t1=(t-r1/с) до tN=(t—rN/с). Это расстояние, пройденное зарядом за время

Фейнмановские лекции по физике. 6. Электродинамика - _402.jpg

А поскольку скорость заряда равна v, то пройденное рас­стояние равно vDt = vb/c. Но длина bсамо это расстояние плюс a:

Отсюда

Фейнмановские лекции по физике. 6. Электродинамика - _403.jpg

Фейнмановские лекции по физике. 6. Электродинамика - _404.jpg

Здесь, конечно, под v подразумевается скорость в «запазды­вающий» момент t' = (t-r'/с); это можно указать, записав [1—v/c]зап; тогда уравнение (21.23) для потенциала прини­мает вид

Это согласуется с тем, что было предположено в (21.29). Поя­вился поправочный множитель. Он появился потому, что в то время, как наш интеграл «проносится над зарядом», сам заряд движется. Когда заряд движется к точке (1), его вклад в ин­теграл увеличивается в bраз. Поэтому правильное значение интеграла равно q/r', умноженному на b/а, т.е. на 1/[1—v/c]зan.

Фейнмановские лекции по физике. 6. Электродинамика - _405.jpg

Если скорость заряда направлена не к точке наблюдения (1), то легко видеть, что важна только составляющая его скорости в направлении к точке (1). Если обозначить эту составляющую скорости через vr, то поправочный множитель запишется в виде 1/[1-vr/с]зап. Кроме того, проделанный нами анализ в равной степени проходит для распределения заряда любой формы (это не обязательно должен быть куб). Наконец, поскольку «раз­мер» а заряда не вошел в окончательный итог, то тот же резуль­тат получится, если заряд стянется до любых размеров, вплоть до точки. Общий результат состоит в том, что скалярный потен­циал точечного заряда, движущегося с произвольной скоростью,

(21.32)

Это уравнение часто пишут в эквивалентном виде:

Фейнмановские лекции по физике. 6. Электродинамика - _406.jpg

Перейти на страницу:
Комментариев (0)
название