Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 445
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 37 38 39 40 41 42 43 44 45 ... 68 ВПЕРЕД
Перейти на страницу:

Таблица 16.2 · МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2

Коэффициенты а, b, с и d объясняются в табл. 10.4.

Фейнмановские лекции по физике. 9. Квантовая механика II - _319.jpg

Рассуждения, которые мы только что провели, были обобще­ны на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в ] + >-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умноже­нием на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следую­щий результат:

Фейнмановские лекции по физике. 9. Квантовая механика II - _320.jpg

где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.

Это очень запутанная формула, но с ее помощью вы сможете проверить табл. 15.2 для j=1 (стр. 129) и составить ваши собственные таблицы для больших j. Некоторые матричные элементы очень важны и получили особые наименования. Например, матричные элементы для m= m'=0и целых j известны под названием полиномов Лежандра и обозначаются </, 0 |

Фейнмановские лекции по физике. 9. Квантовая механика II - _321.jpg

Первые из них таковы:

P0(cosq)=l, (16.37)

P1(cosq)=cosq, (16.38)

Фейнмановские лекции по физике. 9. Квантовая механика II - _322.jpg

§ 5. Измерение ядерного спина

Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции

Фейнмановские лекции по физике. 9. Квантовая механика II - _323.jpg

где a1 — это a-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:

Фейнмановские лекции по физике. 9. Квантовая механика II - _324.jpg

Значит, на опыте видны возникающие в реакции две a-частицы. Обозначим их a1и a2; поскольку они вылетают с разными энер­гиями, их можно отличить друг от друга. Кроме того, выбирая a1, имеющие нужную энергию, мы можем отобрать любые воз­бужденные состояния Ne20.

Опыт ставился так, как показано на фиг. 16.9.

Фейнмановские лекции по физике. 9. Квантовая механика II - _325.jpg

Фиг. 16.9. Размещение приборов в опыте по определению спина воз­бужденных состояний Ne20.

Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая a-частица регистрировалась кремниевым детектором, настроенным на прием a-частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая a-частица регистрировалась счетчиком a2, поставленным под углом q к a1. Скорость счета сигналов совпа­дений от a1 и a2 измерялась как функция угла q.

Идея опыта в следующем. Прежде всего нужно знать, что спины С12, О16 и a-частицы все равны нулю. Назовем направ­ление движения начальных частиц С12 направлением +z; тогда известно, что Ne20* должен обладать нулевым моментом коли­чества движения относительно оси z. Ведь ни у одной из осталь­ных частиц нет спина; кроме того, С12 прилетает вдоль оси z и a1 улетает вдоль оси z, так что у них не может быть момента относительно этой оси. И каким бы ни был спин j ядра Ne20*, мы знаем, что это ядро находится в состоянии |j, 0>. Что же случится, когда Ne20* распадется на О16 и другую a-частицу? Что ж, a-частицу поймает счетчик a2, а О16, чтобы сохранить начальный импульс, вынужден будет уйти в противоположную сторону. Относительно новой оси (оси a2) не может быть тоже никакой компоненты момента количества движения. А раз конечное состояние имеет относительно новой оси нулевой мо­мент количества движения, то у распада Ne20* должна быть некоторая амплитуда того, что m'=0, где m'—квантовое число компоненты момента количества движения относительно новой оси. Вероятность наблюдать a2 под углом q будет на самом деле равна квадрату амплитуды (или матричного эле­мента)

Фейнмановские лекции по физике. 9. Квантовая механика II - _326.jpg

Чтобы получить спин интересующего нас состояния Ne20*, вычертим интенсивность наблюдений второй a-частицы как функцию угла и сравним с теоретическими кривыми для раз­личных значений j. Как мы отмечали в конце предыдущего параграфа, амплитуды <j,0|Ry(q)|j,0>—это просто функции Рj(cosq). Значит, угловые распределения будут следовать кри­вым [Pj(cosq)]2. Экспериментальные результаты для двух возбужденных состояний показаны на фиг. 16.10.

Фейнмановские лекции по физике. 9. Квантовая механика II - _327.jpg

Фиг. 16.10. Экспе­риментальные резуль­таты измерений уг­лового распределения a-частиц, вылетающих при распаде двух воз­бужденных состояний Ne20.

Они получены на устрой­стве, показанном на фиг. 16.9.

Вы видите, что угловое распределение для состояния 5,80 Мэв очень хорошо укладывается на кривую1(cosq)]2, т. е. оно должно быть состоянием со спином 1. С другой стороны, данные для состоя­ния 5,63 Мэв выглядят совершенно иначе; они ложатся на кривую [Р3(cosq)]2. Спин этого состояния равен 3.

В этом опыте мы измерили момент количества движения двух возбужденных состояний Ne20*. Этой информацией можно воспользоваться, чтобы понять, как ведут себя протоны и нейтроны внутри этого ядра, и это принесет нам добавочные сведения о таинственных ядерных силах.

§ 6. Сложение моментов количества движения

Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состоя­ния системы, составленной из двух частиц — электрона и протона — со спинами 1/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно ос­тавшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения квантовомеханической системы.

Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а (электрон) и частица b (протон). Спин частицы а был равен ja(=1/2), a z-компонента момента количества движе­ния mамогла принимать одно из нескольких значений (на са­мом деле два, а именно mа=+1/2 или mа=-1/2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения mb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с mа= 1/2 и частицы b с mb=-1/2 можно было образовать состояние | а, +1/2; b, -1/2>. Вообще, объединенные состояния образовы­вали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равен либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или -1 при J=1 и нулю при J=0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.

1 ... 37 38 39 40 41 42 43 44 45 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название