-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 216
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 43 ВПЕРЕД
Перейти на страницу:

Для начала нужно сказать, что выражение «реальное поле» реального смысла не имеет. Во-первых, вы вряд ли вообще полагаете, что магнитное поле хоть в какой-то степени «реаль­но», потому что и сама идея поля — вещь довольно отвлеченная. Вы не можете протянуть руку и пощупать это магнитное поле. Кроме того, величина магнитного поля тоже не очень опреде­ленна; выбором подходящей подвижной системы координат можно, к примеру, добиться, чтобы магнитное поле в данной точке вообще пропало.

Под «реальным» полем мы понимаем здесь вот что: реальное поле — это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,— это говорить, что прочие заряды создают какие-то «условия» (какие — не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и маг­нитное поля), то можем полностью определить поведение части­цы, нимало не заботясь после о том, что именно создало эти условия.

Иными словами, если бы эти прочие заряды каким-то обра­зом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть сово­купность чисел, заданных так, что то, что происходит в некото­рой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потен­циал «реальным» полем.

Вас может удивить тот факт, что векторный потенциал опре­деляется не единственным образом, что его можно изменить, добавив к нему градиент любого скаляра, а силы, действующие на частицы, не изменятся. Однако это не имеет ничего общего с вопросом реальности в том смысле, о котором мы говорили, К примеру, магнитное поле как-то меняется при изменении относительного движения (равно как и Е или А). Но нас ни­сколько не будет заботить, что поле можно изменять таким образом. Нам это безразлично; это никак не связано с вопросом о том, действительно ли векторный потенциал—«реальное» поле, пригодное для описания магнитных эффектов, или же это просто удобный математический прием.

Мы должны еще сделать кое-какие замечания о полезности векторного потенциала А. Мы видели, что им можно пользо­ваться в формальной процедуре расчета магнитных полей заданных токов, в точности как j может применяться для оты­скания электрических полей. В электростатике мы видели, что j давалось скалярным интегралом

Фейнмановские лекции по физике. 6. Электродинамика - _38.jpg

(15.22)

Фейнмановские лекции по физике. 6. Электродинамика - _39.jpg

Из этого j мы получали три составляющих Е при помощи трех дифференцирований. Обычно это было легче, чем вычислять три интеграла в векторной формуле

(15.23)

Во-первых, их три, а во-вторых, каждый из них вообще-то немного посложнее, чем (15.22).

В магнитостатике преимущества не так ясны. Интеграл для А уже сам по себе векторный:

Фейнмановские лекции по физике. 6. Электродинамика - _40.jpg

(15.24)

Фейнмановские лекции по физике. 6. Электродинамика - _41.jpg

т. е. здесь написаны три интеграла. Кроме того, вычисляя ро­тор А для получения В, надо взять шесть производных и рас­ставить их попарно. Сразу не ясно, проще ли это, чем прямое вычисление

(15.25)

В простых задачах векторным потенциалом часто бывает пользоваться труднее, и вот по какой причине. Предположим, нас интересует магнитное поле В в одной только точке, а задача обладает какой-то красивой симметрией. Скажем, нам нужно знать поле в точке на оси кольцевого тока. Вследствие симмет­рии интеграл в (15.25) легко возьмется и вы сразу получите В. Если бы, однако, мы начали с А, то пришлось бы вычислять В из производных А, а для этого надо было бы знать А во всех точках по соседству с той,которая нас интересует. Большая же часть их не лежит на оси симметрии, интеграл для А услож­няется. В задаче с кольцом, например, пришлось бы иметь дело с эллиптическими интегралами. В подобных задачах А, разу­меется, не приносит большой пользы. Во многих сложных задачах, бесспорно, легче работать с А, но в общем трудно было бы доказывать, что эти технические облегчения стоят того, чтобы начать изучать еще одно векторное поле.

Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно — «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде

F = q(E+vXB), (15.26)

так что, как только заданы силы, движение оказывается пол­ностью определенным. В любой области, где В = 0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А — не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.

§ 5. Векторный потенциал и квантовая механика

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассмат­ривали раньше.) В частности, постепенно сходит на нет поня­тие силы, а понятия энергии и импульса приобретают перво­степенную важность. Вместо движения частиц, как вы пом­ните, речь теперь идет уже об амплитудах вероятностей, кото­рые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связывае­мые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики.

Фейнмановские лекции по физике. 6. Электродинамика - _42.jpg

Фиг. 15.5. Интерференционный опыт с электронами.

Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энер­гиями взаимодействия двух нуклонов, а не с силой их взаимо­действия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике век­торный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с по­мощью А и j.

Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифрак­цию на двух щелях. На фиг. 15.5 показано то же устройство. Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвиж­ным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С1еiф1и С2еiф2, разность фаз d=Ф12 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением

1 2 3 4 5 6 7 8 9 10 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название