Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Фейнмановские лекции по физике. 2. Пространство. Время. Движение читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Однако с точки зрения современного физика это случится почти наверняка; в противном случае можно было бы по быстроте развития опухоли судить о скорости корабля!
Очень интересным примером замедления времени при движении снабжают нас мю-мезоны (мюоны) — частицы, которые в среднем через 2,2·10-6 сек самопроизвольно распадаются. Они приходят на Землю с космическими лучами, но могут быть созданы и искусственно в лаборатории. Часть космических мюонов распадается еще на большой высоте, а остальные — только после того, как остановятся в веществе. Ясно, что при таком кратком времени жизни мюон не может пройти больше 600 м, даже если он будет двигаться со скоростью света. Но хотя мюоны возникают на верхних границах атмосферы, примерно на высоте 10 км и выше, их все-таки обнаруживают в земных лабораториях среди космических лучей. Как это может быть? Ответ состоит в том, что разные мюоны летят с различными скоростями, иногда довольно близкими к скорости света. С их собственной точки зрения они живут всего лишь около 2 мксек, с нашей же — их жизненный путь несравненно более долог, достаточно долог, чтобы достигнуть поверхности Земли. Их жизнь удлиняется в 1/Ц(1-u2/c2)раз. Среднее время жизни мюонов разных скоростей было точно измерено, причем полученное значение хорошо согласуется с формулой.
Мы не знаем, почему мезон распадается и каков его внутренний механизм, но зато мы знаем, что его поведение удовлетворяет принципу относительности. Тем и полезен этот принцип — он позволяет делать предсказания даже о тех вещах, о которых другим путем мы мало чего узнаем. К примеру, еще не имея никакого представления о причинах распада мезона, мы все же можем предсказать, что если его скорость составит 9/10 скорости света, то кажущаяся продолжительность отведенного ему срока жизни будет равна 2,2 · 10-6/Ц(1-92/102) сек. И это предсказание оправдывается. Правда, неплохо?
§ 5. Лоренцево сокращение
Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами S и S', или соответственно системами Джо и Мика. Мы уже отметили, что первое уравнение основывается на предположении Лоренца о том, что по направлению х все тела сжимаются. Как же можно доказать, что такое сокращение действительно бывает? Мы уже понимаем, что в опыте Майкельсона — Морли по принципу относительности поперечное плечо ВС не может сократиться; в то же время нулевой результат опыта требует,
чтобы времена были равны. Чтобы получился такой результат, приходится допустить, что продольное плечо BE кажется сжатым в отношении Ц(1-и2/с2). Что означает это сокращение на языке Джо и Мика? Положим, что Мик, двигаясь с системой S' в направлении х', измеряет метровой линейкой координату х' в некоторой точке. Он прикладывает линейку х' раз и думает, что расстояние равно х' метрам. С точки же зрения Джо, (в системе S) линейка у Мика в руках укорочена, а «на самом деле» отмеренное им расстояние равно x'Ц(1-u2/с2) метров. Поэтому если система S' удалилась от системы S на расстояние ut, то наблюдатель в системе S должен сказать, что эта точка (в его координатах) удалена от начала на x=x'Ц(1-u2/c2)+ut, или
Это и есть первое уравнение из преобразований Лоренца.
§ 6. Одновременность
Подобным же образом из-за различия в масштабах времени появляется и знаменатель в уравнении (15.Зг) в преобразованиях Лоренца. Самое интересное в этом уравнении — это новый и неожиданный член в числителе, член ux/с2. В чем его смысл? Внимательно вдумавшись в положение вещей, можно понять, что события, происходящие, по мнению Мика (наблюдателя в системе S'), в разных местах одновременно, с точки зрения Джо (в системе S), вовсе не одновременны. Когда одно событие случилось в точке x1в момент t0, а другое — в точке х2в тот же момент t0, то соответствующие моменты t1 и t2 отличаются на
Это явление можно назвать «нарушением одновременности удаленных событий». Чтобы пояснить его, рассмотрим следующий опыт.
Пусть человек, движущийся в космическом корабле (система S'), установил в двух концах корабля часы. Он хочет знать, одинаково ли они идут. Как синхронизовать ход часов? Это можно сделать по-разному. Вот один из способов, он почти не требует вычислений. Расположимся как раз где-то посредине между часами. Из этой точки пошлем в обе стороны световые сигналы. Они будут двигаться в обоих направлениях с одинаковой скоростью и достигнут обоих часов в одно и то же время. Вот этот-то одновременный приход сигналов и можно применить для согласования хода. Положим, что человек в S' таким способом согласует ход часов. Посмотрим, согласится ли наблюдатель в системе S, что эти часы идут одинаково. Космонавт в системе S' имеет право верить, что их ход одинаков; ведь он не знает, что он движется. Но наблюдатель в системе S сразу рассудит, что раз корабль движется, то часы на носу корабля удалились от светового сигнала и свету пришлось пройти больше половины длины корабля, прежде чем он достиг часов; часы на корме, наоборот, двигались к световому сигналу — значит, его путь сократился. Поэтому сигнал сперва дошел до часов на корме, хотя космонавту в системе S' показалось, что сигналы достигли обоих часов одновременно. Итак, выходит, что когда космонавт считает, что события в двух местах корабля произошли одновременно (при одном и том же значении t'в его системе координат), то в другой системе координат одинаковым t' отвечают разные значения t!
§ 7. Четырехвекторы
Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили о вращении координат. Тогда мы получили
т. е. новое х' перемешивает старые х и y, а у' тоже их перемешивает. Подобным же образом в преобразовании Лоренца новое х' есть смесь старых х и t, а новое t' — смесь t и х. Значит, преобразование Лоренца похоже на вращение, но «вращение» в пространстве и времени. Это весьма странное понятие. Проверить аналогию с вращением можно, вычислив величину
В этом уравнении три первых члена в каждой стороне представляют собой в трехмерной геометрии квадрат расстояния между точкой и началом координат (сферу). Он не меняется (остается инвариантным), несмотря на вращение осей координат. Аналогично, уравнение (15.9) свидетельствует о том, что существует определенная комбинация координат и времени, которая остается инвариантной при преобразовании Лоренца, Значит, имеется полная аналогия с вращением; аналогия эта такого рода, что векторы, т. е. величины, составленные из «компонент», преобразуемых так же, как и координаты, оказываются полезными и в теории относительности.