-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 223
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 29 30 31 32 33 34 35 36 37 ... 43 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 6. Электродинамика - _293.jpg

Можно было бы прямо рассмотреть решение волнового урав­нения для какой-нибудь из электромагнитных величин. Вместо этого мы начнем прямо с начала, с уравнений Максвелла для пустого пространства, и вы убедитесь в их тесной связи с элек­тромагнитными волнами. Так что мы отправляемся от уравне­ний (20.1), полагая, что в них токи и заряды равны нулю. Они обращаются в

(20.12)

Фейнмановские лекции по физике. 6. Электродинамика - _294.jpg

Распишем первое уравнение покомпонентно:

(20.13)

Мы предположили, что по у и z поле не меняется, так что два последних члена равны нулю. Тогда, согласно (20.13),

Фейнмановские лекции по физике. 6. Электродинамика - _295.jpg

(20.14)

Решением его является постоянное в пространстве Ех(компо­нента электрического поля в направлении х). Взглянув на уравнение IV в (20.12) и полагая, что В тоже не изменяется вдоль y и z, вы убедитесь, что Ехпостоянно и во времени. Таким по­лем может оказаться постоянное поле от какого-то заряженного конденсатора вдали от этого конденсатора. Нас сейчас не за­нимают такие неинтересные статические поля; мы интересуем­ся лишь динамически изменчивыми полями. А для динамиче­ских полей Ех=0.

Итак, мы пришли к важному результату о том, что при распространении плоских волн в произвольном направлении электрическое поле должно располагаться поперек направления своего распространения. Конечно, у него еще остается возмож­ность каким-то сложным образом изменяться по координате х.

Поперечное поле Е можно всегда разбить на две компонен­ты, скажем на у и z. Так что сначала разберем случай наличия у электрического ноля только одной поперечной компоненты. Для начала возьмем электрическое поле, направленное по у, т. е. с нулевой z-компонентой. Ясно, что, решив эту задачу, мы всегда сможем разобрать и тот случай, когда электрическое поле всюду направлено по z. Общее решение можно всегда представить в виде суперпозиции двух таких полей.

Какими простыми стали теперь наши уравнения! Теперь единственная ненулевая компонента электрического поля — это Еу, и все производные (кроме производных по х) тоже рав­ны нулю. Остатки уравнений Максвелла выглядят чрезвычайно просто.

Фейнмановские лекции по физике. 6. Электродинамика - _296.jpg

Рассмотрим теперь второе из уравнений Максвелла [т. е. II из (20.12)]. Расписав компоненты rot E, получаем

здесь x-компонента СXE равна нулю, потому что равны нулю производные по у и z; y-компонента тоже равна нулю: первый член потому, что все производные по z равны нулю, а второй потому, что Ez=0. Единственная не равная нулю компонента rot E — это z-компонента, она равна дЕу/дх. Полагая, что три компоненты СXE равны соответствующим компонентам —dB/dt, мы заключаем, что

Фейнмановские лекции по физике. 6. Электродинамика - _297.jpg

Фейнмановские лекции по физике. 6. Электродинамика - _298.jpg

(20.15)

(20.16)

Поскольку временные производные как x-компоненты магнит­ного поля, так и

y-компоненты магнитного поля равны нулю, то обе эти компоненты суть попросту постоянные поля и отве­чают найденным раньше магнитостатическим решениям. Ведь кто-то мог оставить постоянный магнит возле того места, где распространяются волны. Мы будем игнорировать эти по­стоянные поля и положим Вхи Вyравными нулю.

Кстати, о равенстве нулю x-компонент поля В мы должны были бы заключить и по другой причине. Поскольку диверген­ция В равна нулю (по третьему уравнению Максвелла), то мы, прибегая при рассмотрении электрического поля к тем же доводам, что и выше, должны были бы прийти к выводу, что продольная компонента магнитного поля не может изменяться вдоль х. А раз мы такими однородными полями в наших вол­новых решениях пренебрегаем, то нам следовало бы положить Вхравным нулю. В плоских электромагнитных волнах поле В, равно как и поле Е, должно быть направлено поперек направ­ления распространения самих волн.

Равенство (20.16) дает нам добавочное утверждение о том, что если электрическое поле имеет только y-компоненту, то магнитное поле имеет только z-компоненту. Значит, Е и В перпендикулярны друг другу. Именно это и наблюдалось в той волне особого типа, которую мы уже рассмотрели.

Фейнмановские лекции по физике. 6. Электродинамика - _299.jpg

Теперь мы готовы использовать последнее из уравнений Максвелла для пустого пространства [т. е. IV из (20.12)1. Рас­писывая покомпонентно, имеем

Фейнмановские лекции по физике. 6. Электродинамика - _300.jpg

(20.17)

Из шести производных от компонент В только dBz/dx не равна нулю. Так что три уравнения просто дают

Фейнмановские лекции по физике. 6. Электродинамика - _301.jpg

(20.18)

Фейнмановские лекции по физике. 6. Электродинамика - _302.jpg

Итог всей нашей деятельности состоит в том, что отличны от нуля только по одной компоненте электрического и магнит­ного полей и эти компоненты обязаны удовлетворять уравне­ниям (20.16) и (20.18). Эти два уравнения можно объединить в одно, если первое из них продифференцировать по х, а второе— по t; тогда левые стороны уравнений совпадут (с точностью до множителя с2). И мы обнаруживаем, что Е подчиняется урав­нению

(20.19)

Мы уже встречали это дифференциальное уравнение, когда изучали распространение звука. Это волновое уравнение для одномерных волн.

Заметьте, что в процессе вывода мы получили больше, чем содержится в (20.11). Уравнения Максвелла дали нам ин­формацию и о том, что у электромагнитных волн есть только компоненты поля, расположенные под прямым углом к направ­лению распространения волн.

Фейнмановские лекции по физике. 6. Электродинамика - _303.jpg

Вспомним все, что нам известно о решениях одномерного волнового уравнения. Если какая-то величина ш удовлетво­ряет одномерному волновому уравнению

(20.20)

то одним из возможных решений является функция ш (x, t),

Фейнмановские лекции по физике. 6. Электродинамика - _304.jpg

имеющая вид

(20.21)

т. е. функция одной-единственной переменной (x-ct). Функция i(x-ct) представляет собой «жесткое» образование вдоль оси х, которое движется по направлению к положительным х со ско­ростью с (фиг. 20.4). Так, если максимум функции f приходится на нулевое значение аргумента, то при t=0 максимум ш ока­зывается при x=0. В более поздний момент, скажем при t=10, максимум ш окажется в точке х=10 с. Когда время движется, максимум тоже движется в сторону возрастания х со скоростью с. Порой удобнее считать, что решение одномерного волно­вого уравнения является функцией от (t-х/с). Однако в сущ­ности это одно и то же, потому что любая функция от (t-х/с)— это

Фейнмановские лекции по физике. 6. Электродинамика - _305.jpg

также функция от (x-ct):

Фейнмановские лекции по физике. 6. Электродинамика - _306.jpg

1 ... 29 30 31 32 33 34 35 36 37 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название