Фейнмановские лекции по физике. 8. Квантовая механика I

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 8. Квантовая механика I, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 8. Квантовая механика I
Название: Фейнмановские лекции по физике. 8. Квантовая механика I
Дата добавления: 15 январь 2020
Количество просмотров: 369
Читать онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I читать книгу онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 24 25 26 27 28 29 30 31 32 ... 37 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 8. Квантовая механика I - _245.jpg

где Ерэнергия частицы с импульсом р, т. е.

Фейнмановские лекции по физике. 8. Квантовая механика I - _246.jpg

а Е0, как и прежде, —энергия покоя. В нерелятивистских задачах можно писать

Фейнмановские лекции по физике. 8. Квантовая механика I - _247.jpg

где Wpизбыток (или нехватка) энергии по сравнению с энергией покоя Мsс2 частей атома. В общем случае в Wpдолжны были бы войти и кинетическая энергия атома, и его энергия связи или возбуждения, которые можно назвать «внутренней» энергией. Тогда мы бы писали

Фейнмановские лекции по физике. 8. Квантовая механика I - _248.jpg

а амплитуды имели бы вид

Фейнмановские лекции по физике. 8. Квантовая механика I - _249.jpg

Мы собираемся все расчеты вести нерелятивистски, так что именно таким видом амплитуд вероятностей мы и будем поль­зоваться.

Заметьте, что наше релятивистское преобразование снаб­дило нас формулой для изменения амплитуды атома, движу­щегося в пространстве, не требуя каких-либо добавочных до­пущений. Волновое число ее изменений в пространстве, как это следует из (5.9), равно

Фейнмановские лекции по физике. 8. Квантовая механика I - _250.jpg

а, значит, длина волны

Фейнмановские лекции по физике. 8. Квантовая механика I - _251.jpg

Это та самая длина волны, которую мы раньше использовали для частиц с импульсом р. Именно таким путем де-Бройль впервые пришел к этой формуле. Для движущейся частицы частота изменения амплитуды по-прежнему дается формулой

Фейнмановские лекции по физике. 8. Квантовая механика I - _252.jpg

Абсолютная величина (5.9) равна просто единице, так что для частицы, движущейся с определенной энергией, вероят­ность обнаружить ее где бы то ни было - одна и та же повсю­ду и со временем не меняется. (Важно отметить, что амплиту­да это комплексная волна. Если бы мы пользовались веще­ственной синусоидой, то ее квадрат от точки к точке менялся бы, что было бы неверно.)

Конечно, мы знаем, что бывают случаи, когда частицы дви­жутся от одного места к другому, так что вероятность зависит от положения и изменяется со временем. Как же нужно опи­сывать такие случаи? Это можно сделать, рассматривая ампли­туды, являющиеся суперпозицией двух или большего числа амплитуд для состояний с определенной энергией. Такое поло­жение мы уже обсуждали в гл. 48 (вып. 4), причем именно для амплитуд вероятности! Мы нашли тогда, что сумма двух ам­плитуд с разными волновыми числами k (т. е. импульсами) и частотами w (т. е. энергиями) приводит к интерференционным буграм, или биениям, так что квадрат амплитуды меняется и в пространстве, и во времени. Мы нашли также, что эти биения движутся с так называемой «групповой скоростью», опреде­ляемой формулой

Фейнмановские лекции по физике. 8. Квантовая механика I - _253.jpg

где Dk и Dw — разности волновых чисел и частот двух волн. В более сложных волнах, составленных из суммы многих амплитуд с близкими частотами, групповая скорость равна

Фейнмановские лекции по физике. 8. Квантовая механика I - _254.jpg

Так как wр/h, a k = p/h, то

Фейнмановские лекции по физике. 8. Квантовая механика I - _255.jpg

Но из (5.6) следует, что

Фейнмановские лекции по физике. 8. Квантовая механика I - _256.jpg

а так как Ep=Mc2, то

Фейнмановские лекции по физике. 8. Квантовая механика I - _257.jpg

а это как раз классическая скорость частицы. Даже применяя нерелятивистские выражения, мы будем иметь

Фейнмановские лекции по физике. 8. Квантовая механика I - _258.jpg

и

Фейнмановские лекции по физике. 8. Квантовая механика I - _259.jpg

т. е. опять классическую скорость.

Результат наш, следовательно, состоит в том, что если име­ется несколько амплитуд для чистых энергетических состоянии с почти одинаковой энергией, то их интерференция приводит к «всплескам» вероятности, которые движутся сквозь прост­ранство со скоростью, равной скорости классической частицы с такой же энергией. Но нужно, однако, заметить, что, когда мы говорим, что можем складывать две амплитуды с разными волновыми числами, чтобы получать пакеты, отвечающие дви­жущейся частице, мы при этом вносим нечто новое — нечто, не выводимое из теории относительности. Мы сказали, как ме­няется амплитуда у неподвижной частицы, и затем вывели из этого, как она должна была бы меняться, если бы частица двигалась. Но из этих рассуждений мы не в состоянии вывести, что случилось бы, если бы были две волны, движущиеся с раз­ными скоростями. Если мы остановим одну из них, мы не смо­жем остановить другую. Так что мы втихомолку добавили еще одну гипотезу: кроме того, что (5.9) есть возможное реше­ние, мы. допускаем, что у той же системы могут быть еще ре­шения со всевозможными p и что различные члены будут интерферировать.

§ 3. Пoтeнциальная энергия; сохранение энергии

А теперь мы хотели бы выяснить вопрос о том, что бывает; когда энергия частицы может меняться. Начнем с размышления о частице, которая движется в поле сил, описываемом потен­циалом. Рассмотрим сперва влияние постоянного потенциала. Пусть у нас имеется большой металлический ящик, который мы зарядили до некоторого электростатического потенциала j (фиг. 5.2).

Фейнмановские лекции по физике. 8. Квантовая механика I - _260.jpg

|Фиг. 5.2. Частица с массой M и импульсом р в области постоянного потенциала.

Если внутри ящика есть заряженные объекты, то их потенциальная энергия будет равна qj; мы обозначим это число буквой V. Оно по условию совершенно не зависит от положения самого объекта. От наложения потенциала никаких физических изменений внутри ящика не произойдет, ведь постоянный потенциал ничего не меняет в том, что происходит внутри ящика. Значит, закон, по которому теперь будет меняться амплитуда, вывести никак нельзя. Можно только догадаться. Вот он, правильный ответ — он выглядит примерно так, как и следовало ожидать: вместо энергии нужно поставить сумму потенциальной энергии V и энергии Ер, которая сама есть сумма внутренней и кинетической энергий. Амплитуда тогда будет пропорциональна

Фейнмановские лекции по физике. 8. Квантовая механика I - _261.jpg

Общий принцип состоит в том, что коэффициент при t, который можно было бы назвать со, всегда дается полной энергией системы: внутренней энергией («энергией массы») плюс кине­тическая энергия плюс потенциальная энергия:

Фейнмановские лекции по физике. 8. Квантовая механика I - _262.jpg

Или в нерелятивистском случае

Фейнмановские лекции по физике. 8. Квантовая механика I - _263.jpg

Ну, а что можно сказать о физических явлениях внутри ящика? Если физическое состояние не одно, а несколько, то что мы получим? В амплитуду каждого состояния войдет один и тот же добавочный множитель

e-(i/h)Vt

сверх того, что было при V=0. Это ничем не отличается от сдвига нуля нашей энергетической шкалы. Получится одинаковый сдвиг всех фаз всех амплитуд, а это, как мы раньше убе­дились, не меняет никаких вероятностей. Все физические яв­ления остаются теми же. (Мы предположили, что речь идет о разных состояниях одного и того же заряженного объекта, так что qj у них у всех одинаково. Если бы объект мог менять свой заряд, переходя от одного состояния к другому, то мы пришли бы к совершенно другому результату, но сохранение заряда предохраняет нас от этого.)

1 ... 24 25 26 27 28 29 30 31 32 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название