Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 444
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 20 21 22 23 24 25 26 27 28 ... 68 ВПЕРЕД
Перейти на страницу:

фиг. 14.1. Плотность вероятности для волно­вой функции (14.24).

Большая часть вероятности сосредото­чена между х=+х=-s. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х)не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Dx равнялось вероят­ности обнаружить электрон в Dx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования

Р (х) dx=1, потому что вероятность обнаружить электрон

где попало равна единице. Мы находим, что К = (2ps2)-1/4.

Теперь найдем распределение по импульсу. Пусть j(p)

есть амплитуда того, что импульс электрона окажется равным р:

Фейнмановские лекции по физике. 9. Квантовая механика II - _171.jpg

Подстановка (14.25) в (14.24) дает

Фейнмановские лекции по физике. 9. Квантовая механика II - _172.jpg

что можно также переписать в форме

Фейнмановские лекции по физике. 9. Квантовая механика II - _173.jpg

Сделаем теперь замену

Фейнмановские лекции по физике. 9. Квантовая механика II - _174.jpg
интеграл обратится в

Фейнмановские лекции по физике. 9. Квантовая механика II - _175.jpg

Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:

Фейнмановские лекции по физике. 9. Квантовая механика II - _176.jpg

Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:

Фейнмановские лекции по физике. 9. Квантовая механика II - _177.jpg

где полуширина h распределения по р связана с полушириной а распределения по х формулой

Фейнмановские лекции по физике. 9. Квантовая механика II - _178.jpg

Наш результат утверждает: если сделать распределение по х очень узким, взяв s малым, то h станет большим и распре­деление по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать h и sкак некую меру неопределенности локализации импульса и коор­динаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Dр и Dx, то (14.33) обратится в

Фейнмановские лекции по физике. 9. Квантовая механика II - _179.jpg

Интересно вот что: можно доказать, что при всяком ином

виде распределения по х или по р произведение DpDx не может

стать меньше, чем у нас получилось. Гауссово распределение

дает наименьшее возможное значение произведения средних

квадратичных. В общем случае

Фейнмановские лекции по физике. 9. Квантовая механика II - _180.jpg

Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения DpDx — это число порядка h.

§ 4. Нормировка состояний с определенной координатой х

Теперь мы вернемся к обсуждению тех изменений в наших основных уравнениях, которые необходимо сделать для работы с континуумом базисных состояний. Когда имеется конечное число дискретных состояний, то фундаментальное условие, которому должна удовлетворять система базисных состояний, имеет вид

Фейнмановские лекции по физике. 9. Квантовая механика II - _181.jpg

Если частица пребывает в одном базисном состоянии, то ампли­туда пребывания в другом базисном состоянии равна нулю. С помощью подходящей нормировки можно так определить амплитуду <i|j>, чтобы она была равна единице. Оба эти условия содержатся в (14.36). Теперь мы хотим понять, как надо видоизменить это соотношение, когда пользуются базисными состояниями частицы на прямой. Если известно, что частица пребывает в одном из базисных состояний |х>, то какова ампли­туда того, что она пребывает в другом базисном состоянии |x'>? Если х и х' — две разные точки прямой, то амплитуда <x|х'>, конечно, есть нуль, что согласуется с (14.36). Но когда х и х' равны, то амплитуда <x|х' > не будет равна единице из-за той же старой проблемы нормировки. Чтобы увидеть, как надо все подправить, вернемся к (14.19) и применим это уравнение к частному случаю, когда состояние |j> — просто-напросто базисное состояние |х'>. Тогда получится

Фейнмановские лекции по физике. 9. Квантовая механика II - _182.jpg

Далее, амплитуда <x|y> это как раз то, что мы назвали функцией y (х). Подобно атому а амплитуда <x'|y>, по­скольку она относится к тому же состоянию y, является той же функцией переменной х', а именно y (х'). Поэтому (14,37) можно переписать так;

Фейнмановские лекции по физике. 9. Квантовая механика II - _183.jpg

Уравнение должно выполняться для любого состояния y и, стало быть, для любой функции y (х). Это требование обязано полностью определить природу амплитуды <x|х'), которая, конечно, есть попросту функция, зависящая от х и х'.

Наша задача теперь состоит в том, чтобы отыскать функцию f(х, х'), которая после умножения на y (х)и интегрирования по всем х даст как раз величину y (х'). Но оказывается, что не существует математической функции, которая это умеет делать! По крайней мере не существует ничего похожего на то, что мы обычно имеем в виду под словом «функция».

Выберем какое-нибудь значение х', например 0, и опреде­лим амплитуду <0|x> как некую функцию х, скажем f(х). Тогда (14.38) обратится в

Фейнмановские лекции по физике. 9. Квантовая механика II - _184.jpg

Какого же вида функция f(х)могла бы удовлетворить такому уравнению? Раз интеграл не должен зависеть от того, какие значения принимает y (х)при х, отличных от нуля, то ясно, что f(х)должна быть равна нулю для всех значений х, кроме нуля. Но если f(х)всюду равна нулю, то интеграл будет тоже равен нулю, и уравнение (14.39) не удастся удовлетворить. Возникает невозможная ситуация: нам нужно, чтобы функция была нулем всюду, кроме одной точки, и давала все же конечный интеграл. Что ж, раз мы не в состоянии сыскать функцию, которая так поступает, то простейший выход — просто сказать, что функция f(х) определяется уравнением (14.39). И именно f(х) — такая функция, которая делает (14.39) правильным. Функция, которая умеет это делать, впервые была изобретена Дираком и носит его имя. Мы обозначаем ее d (х). Все, что о ней утверждается — это что функция d(х)обладает странным свойством: если ее подставить вместо f(х)в (14.39), то интеграл выберет то значе­ние, которое y (х)принимает при х=0; и поскольку интеграл не должен зависеть от y (х)при х, отличных от нуля, то функция d(х)должна быть нулем всюду, кроме х=0. Словом, мы пишем

<0|x>=d(x), (14.40)

где d (х)определяется соотношением

Фейнмановские лекции по физике. 9. Квантовая механика II - _185.jpg

Посмотрите, что выйдет, если вместо y в (14.41) поставить частную функцию «1». Тогда получится

Фейнмановские лекции по физике. 9. Квантовая механика II - _186.jpg

1 ... 20 21 22 23 24 25 26 27 28 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название