Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 488
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 68 ВПЕРЕД
Перейти на страницу:

E=E0-2Acoskb. (13.25)

Теперь из этих решений нам нужно оставить только такие, которые через каждые 6 атомов повторяются. Разберем сперва общий случай, когда в кольце N атомов. Если решение должно иметь период в N атомных расстояний, то eikbNдолжна быть равна единице, или kbN должна быть кратна 2p. Если s — любое це­лое число, то наше условие имеет вид

kbN=2ps. (13.26)

Мы раньше видели, что нет смысла брать k вне пределов ±p/b. Это означает, что мы получим все мыслимые состояния, беря значения s в пределах ±N/2.

Стало быть, мы приходим к тому, что у N-атомного кольца имеется N состояний определенной энергии и их волновые числа ksдаются числами

ks=2ps/Nb. (13.27)

Каждое состояние имеет энергию (13.25). Получается линейча­тый спектр возможных уровней энергий. Спектр для бензола (N=6) показан на фиг. 13.8, б. (Числа в скобках указывают число различных состояний с одинаковой энергией.)

Есть наглядный способ изобразить эти шесть уровней энер­гии. Он показан на фиг. 13.8, а. Вообразим круг с центром на одном уровне с Е0и с радиусом 2А. Если мы отложим, начиная снизу, шесть равных дуг (под углами, считая от нижней точки, ksb = 2ps/N, или 2ps/6 для бензола), то высоты точек круга будут решениями (13.25). Шесть точек представляют шесть возможных состояний. Низший уровень энергии придется на Е0-2А;дальше идут два состояния с одинаковой энергией Е0и т. д. Это возможные состояния одного электрона. Если электронов не один, а больше, то в каждое состояние может попасть по два электрона с противоположными спинами.

У молекулы бензола надо здесь разместить шесть электро­нов. Если состояние основное, то они должны попасть в наи­низшие возможные энергетические состояния — пара в s=0, пара в s=+1 и пара в s =-1. Согласно приближению неза­висимых частиц, энергия основного состояния равна

Фейнмановские лекции по физике. 9. Квантовая механика II - _134.jpg

Она действительно оказывается меньше, чем у трех отдельных двойных связей,— на 2А.

Сравнив энергию бензола с энергией этилена, можно опреде­лить А. Эта величина оказывается равной 0,8 эв, или в едини­цах, которые нравятся химикам, 18 ккал/моль.

Этим описанием можно воспользоваться, чтобы вычислить или понять другие свойства бензола. Например, глядя на фиг. 13.8, можно разобраться в возбуждении бензола светом.

Фейнмановские лекции по физике. 9. Квантовая механика II - _135.jpg

Фиг. 13.8. Уровни энергии в кольце, в котором для электрона приготовлены шесть свободных мест (на­пример, в бензольном).

Что бы произошло, если бы мы попытались возбудить один из электронов? Он мог бы передвинуться к одному из незанятых высших состояний. Наинизшей энергией возбуждения оказался бы переход от наивысшего заполненного уровня к наинизшему пустому. Эта энергия равна 2A. Бензол будет поглощать свет с частотой v=2A/h. Кроме того, будет наблюдаться также по­глощение фотонов с энергиями ЗА и 4A. Нечего и говорить, что спектр поглощения бензола был измерен, и картина спектраль­ных линий оказалась более или менее правильной, если не счи­тать того, что наинизшие переходы наблюдаются в ультрафио­лете; и чтобы удовлетворить всем данным, пришлось бы взять величину А около 1,4—2,4 эв. Иначе говоря, численное значе­ние А вдвое-втрое выше, чем предсказывается энергией хими­ческой связи.

Как же поступает химик в таких случаях? Он анализирует множество молекул сходного типа и выводит какие-то эмпири­ческие правила. Он учит, например: для расчета энергии связи берите вот такое-то и такое-то значение А, а для получения при­ближенно верного спектра поглощения возьмите другое значе­ние A. Вам может показаться, что это звучит слегка абсурдно. И впрямь, в ушах физика, который пытается объяснить всю при­роду из первоначальных принципов, это звучит довольно дико. Но перед химиком задача другая. Он обязан заранее догадаться, что произойдет с молекулами, которых до сих пор не было или которые до конца не поняты. Ему нужен ряд эмпирических пра­вил и ему совершенно все равно, откуда они возьмутся. Так что теорией он пользуется совсем не так, как физик. Он берет урав­нения, в которых отразился свет истины, а потом вынужден менять в них константы, делая эмпирические поправки.

В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он ни­когда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водо­рода да атом гелия.)

§ 5. Еще немного органической химии

Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.

Фейнмановские лекции по физике. 9. Квантовая механика II - _136.jpg

Фиг. 13.9. Изображение с по­мощью валентных связей молекулы бутадиена (1,3).

Мы можем опять затеять те же игры с лишней четверкой электронов, отвечающей двум двойным связям. Если ее убрать, то остается четыре атома углерода по одной линии. А как рас­считывать такую линию, вы уже знаете. «Но позвольте,— скажете вы,—я ведь только знаю, как решать бесконечную ли­нию». Однако решения для бесконечной линии включают также и решения для конечной. Следите. Пусть N — число атомов на прямой; пронумеруем их 1, 2, ..., N (фиг. 13.10).

Фейнмановские лекции по физике. 9. Квантовая механика II - _137.jpg

Фиг. 13.10. Отрезок прямой с N молекулами.

В уравне­нии для амплитуды в точке 1 у вас не появится член для пере­хода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид

Фейнмановские лекции по физике. 9. Квантовая механика II - _138.jpg
и обладают всюду одинаковой абсолютной величиной. Но вспомните, что энергия зависит только от абсолютной вели­чины k, так что другим в равной мере законным решением было бы
Фейнмановские лекции по физике. 9. Квантовая механика II - _139.jpg
. И то же справедливо для любой суперпозиции этих двух решений. Вычитая их, мы получим решение sin kxn, а оно удовлетворяет требованию, чтобы амплитуда при х=0 была нулем. И оно все еще соответствует энергии Е0-2Аcoskb. Далее, подходящим выбором величины k можно также добиться, чтобы амплитуда в xN+1была тоже нулем. Для этого нужно, чтобы (N+1)kb было кратным p, т. е. чтобы

Фейнмановские лекции по физике. 9. Квантовая механика II - _140.jpg

1 ... 14 15 16 17 18 19 20 21 22 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название