Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 444
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 68 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 9. Квантовая механика II - _115.jpg

Это уравнение пригодно всегда, за исключением двух слу­чаев. При m=n уравнения вообще нет, а при m=n±1 пара членов в (13.16) должна пропасть. Этими исключениями мы пренебрежем. Мы просто будем игнорировать тот факт, что не­которые из этих уравнений слегка меняются. Ведь как-никак кристалл считается бесконечным и слагаемых в гамильтониане бесчисленно много; пренебрежение некоторым их числом вряд ли сильно на чем-то скажется. Итак, в первом грубом прибли­жении давайте позабудем об изменениях уравнений. Иными сло­вами, допустим, что (13.16) верно при всех m и n, даже когда m и n стоят по соседству. Это самое существенное в нашем прибли­жении.

Теперь уже решение отыскать нетрудно. Мы немедленно по­лучаем

Фейнмановские лекции по физике. 9. Квантовая механика II - _116.jpg

где

Фейнмановские лекции по физике. 9. Квантовая механика II - _117.jpg

а

Фейнмановские лекции по физике. 9. Квантовая механика II - _118.jpg

Поразмыслим минутку о том, что было бы, если бы у нас были две независимые, отдельные спиновые волны (как в пре­дыдущем параграфе), соответствующие k=k1и k=k2; их энер­гии из (13.12) имели бы вид

Фейнмановские лекции по физике. 9. Квантовая механика II - _119.jpg

и

Фейнмановские лекции по физике. 9. Квантовая механика II - _120.jpg

Заметьте, что энергия Е в (13.19) является как раз их суммой:

Фейнмановские лекции по физике. 9. Квантовая механика II - _121.jpg

Иными словами, наше решение можно толковать следующим образом. Имеются две частицы, т. е. пара спиновых волн, одна из которых обладает импульсом, описываемым числом k1a другая — числом k2; энергия системы равна сумме энергий этих двух объектов. Обе частицы действуют совершенно независи­мо. Вот и все, что в этом есть — и ничего больше.

Конечно, мы сделали некоторые приближения, но в данный момент мы не будем обсуждать точность нашего ответа. Вы, однако, чувствуете, что в кристаллах разумного размера с миллиардами атомов и, стало быть, с миллиардами слагаемых в гамильтониане большой ошибки от пренебрежения немногими слагаемыми не выйдет. Если бы, конечно, перевернутых спинов стало так много, что их плотность была бы заметной, то при­шлось бы позаботиться и о поправках.

(Интересно, что в случае, когда перевернутых спинов только два, можно написать и точное решение. Но результат особой важности не представляет. Просто интересно, что в этом случае уравнения можно решить точно. Решение таково:

Фейнмановские лекции по физике. 9. Квантовая механика II - _122.jpg

с энергией

Фейнмановские лекции по физике. 9. Квантовая механика II - _123.jpg

и с волновыми числами kcи k, связанными с k1 и k2формулами

k1= kc-k, k2=kc+k. (13.22)

В этом решении отражено и «взаимодействие» пары спинов. Оно описывает тот факт, что когда спины сближаются, возникает какая-то вероятность их рассеяния. Поведение спинов очень по­хоже на взаимодействие частиц. Но подробная теория их рас­сеяния выходит за пределы того, о чем мы здесь собрались го­ворить.)

§ 3. Независимые частицы

В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние по­просту есть произведение двух одночастичных состояний. Но решение, которое мы написали для аm,n[формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние | х9, x4> не отличается от состоя­ния |x4, x9), что порядок хmи хnневажен. Вообще говоря, алгеб­раическое выражение для амплитуды Сm,nне должно меняться от перестановки значений хmи хn, потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в хmи в хn.

Но обратите внимание, что (13.18) несимметрично по хmи хn, поскольку k1и k2, вообще говоря, различны.

Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока не­трудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:

Фейнмановские лекции по физике. 9. Квантовая механика II - _124.jpg

И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет ре­шением системы и будет обладать по-прежнему энергией, давае­мой (13.19). Решение, которое нужно выбрать по требованиям симметрии,—просто сумма (13.18) и (13.23):

Фейнмановские лекции по физике. 9. Квантовая механика II - _125.jpg

Теперь при данных k1и k2 амплитуда Сm,nне зависит от того, в каком порядке мы берем хmи хn;если мы случайно поставим хmи хnв обратном порядке, мы получим ту же амплитуду. И на­ше толкование уравнения (13.24) на языке «магнонов» тоже ста­нет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется дву­мя волновыми числами k1и k2. Наше решение выглядит как со­ставное состояние одной частицы с импульсом р1= k1/h и дру­гой частицы с импульсом р2=k2/h, но в этом состоянии нельзя сказать, где какая частица.

В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рас­сказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождест­венные бозе-частицы. Все амплитуды обязаны быть симметрич­ны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хmи хnпросто изменил бы знак аm,n, а это не в счет, это не имеет значения. Но ведь об­мен хmс хn ничего не меняет — все электроны кристалла оста­нутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой ар­гумент.

Наше обсуждение имело двойную цель: во-первых, расска­зать вам кое-что о спиновых волнах; во-вторых, продемонстри­ровать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом пока­зателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой

Фейнмановские лекции по физике. 9. Квантовая механика II - _126.jpg
, а другой . с амплитудой
Фейнмановские лекции по физике. 9. Квантовая механика II - _127.jpg
, и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных ампли­туд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению ампли­туд, есть сумма обеих энергий.

1 ... 12 13 14 15 16 17 18 19 20 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название