Фейнмановские лекции по физике. 9. Квантовая механика II
Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Это уравнение пригодно всегда, за исключением двух случаев. При m=n уравнения вообще нет, а при m=n±1 пара членов в (13.16) должна пропасть. Этими исключениями мы пренебрежем. Мы просто будем игнорировать тот факт, что некоторые из этих уравнений слегка меняются. Ведь как-никак кристалл считается бесконечным и слагаемых в гамильтониане бесчисленно много; пренебрежение некоторым их числом вряд ли сильно на чем-то скажется. Итак, в первом грубом приближении давайте позабудем об изменениях уравнений. Иными словами, допустим, что (13.16) верно при всех m и n, даже когда m и n стоят по соседству. Это самое существенное в нашем приближении.
Теперь уже решение отыскать нетрудно. Мы немедленно получаем
где
а
Поразмыслим минутку о том, что было бы, если бы у нас были две независимые, отдельные спиновые волны (как в предыдущем параграфе), соответствующие k=k1и k=k2; их энергии из (13.12) имели бы вид
и
Заметьте, что энергия Е в (13.19) является как раз их суммой:
Иными словами, наше решение можно толковать следующим образом. Имеются две частицы, т. е. пара спиновых волн, одна из которых обладает импульсом, описываемым числом k1a другая — числом k2; энергия системы равна сумме энергий этих двух объектов. Обе частицы действуют совершенно независимо. Вот и все, что в этом есть — и ничего больше.
Конечно, мы сделали некоторые приближения, но в данный момент мы не будем обсуждать точность нашего ответа. Вы, однако, чувствуете, что в кристаллах разумного размера с миллиардами атомов и, стало быть, с миллиардами слагаемых в гамильтониане большой ошибки от пренебрежения немногими слагаемыми не выйдет. Если бы, конечно, перевернутых спинов стало так много, что их плотность была бы заметной, то пришлось бы позаботиться и о поправках.
(Интересно, что в случае, когда перевернутых спинов только два, можно написать и точное решение. Но результат особой важности не представляет. Просто интересно, что в этом случае уравнения можно решить точно. Решение таково:
с энергией
и с волновыми числами kcи k, связанными с k1 и k2формулами
k1= kc-k, k2=kc+k. (13.22)
В этом решении отражено и «взаимодействие» пары спинов. Оно описывает тот факт, что когда спины сближаются, возникает какая-то вероятность их рассеяния. Поведение спинов очень похоже на взаимодействие частиц. Но подробная теория их рассеяния выходит за пределы того, о чем мы здесь собрались говорить.)
§ 3. Независимые частицы
В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние попросту есть произведение двух одночастичных состояний. Но решение, которое мы написали для аm,n[формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние | х9, x4> не отличается от состояния |x4, x9), что порядок хmи хnневажен. Вообще говоря, алгебраическое выражение для амплитуды Сm,nне должно меняться от перестановки значений хmи хn, потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в хmи в хn.
Но обратите внимание, что (13.18) несимметрично по хmи хn, поскольку k1и k2, вообще говоря, различны.
Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока нетрудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:
И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет решением системы и будет обладать по-прежнему энергией, даваемой (13.19). Решение, которое нужно выбрать по требованиям симметрии,—просто сумма (13.18) и (13.23):
Теперь при данных k1и k2 амплитуда Сm,nне зависит от того, в каком порядке мы берем хmи хn;если мы случайно поставим хmи хnв обратном порядке, мы получим ту же амплитуду. И наше толкование уравнения (13.24) на языке «магнонов» тоже станет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется двумя волновыми числами k1и k2. Наше решение выглядит как составное состояние одной частицы с импульсом р1= k1/h и другой частицы с импульсом р2=k2/h, но в этом состоянии нельзя сказать, где какая частица.
В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рассказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождественные бозе-частицы. Все амплитуды обязаны быть симметричны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хmи хnпросто изменил бы знак аm,n, а это не в счет, это не имеет значения. Но ведь обмен хmс хn ничего не меняет — все электроны кристалла останутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой аргумент.
Наше обсуждение имело двойную цель: во-первых, рассказать вам кое-что о спиновых волнах; во-вторых, продемонстрировать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом показателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой
