Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
К. присущи некоторые характерные закономерности, одинаковые для К. различной физической природы. Вследствие этого возникла область физики — теория К., занимающаяся исследованием общих закономерностей К. Математическим аппаратом теории К. являются главным образом дифференциальные уравнения . Существуют группы К. различной физической природы, которым соответствуют аналогичные дифференциальные уравнения [например, К. маятника, груза на пружине и электрического контура (см. илл. ); часов и лампового генератора; упругого стержня и электрического кабеля]. Аналогичность этих уравнений отображает общность некоторых объективно существующих закономерностей, присущих К. этой группы. Однако аналогии между К. различной физической природы, как и всякие аналогии, ограничены определёнными рамками; они охватывают далеко не все существенные черты К.
Исследование К. маятника, предпринятое в начале 17 в. итальянским учёным Г. Галилеем, а затем голландским учёным Х. Гюйгенсом , сыграло важнейшую роль в возникновении классической механики. Изучение в конце 19 в. электромагнитных К. английским физиком У. Томсоном (Кельвином) имело большое значение для понимания электромагнитных явлений. Много важных сведений и результатов по теории К. содержится в трудах английского физика Дж. Рэлея .
Учение о К. многим обязано трудам русских учёных. Изобретение радио А. С. Поповым (1895) явилось важнейшим техническим применением электромагнитных колебаний. П. Н. Лебедев посвятил ряд выдающихся исследований получению электромагнитных К. очень высокой частоты, ультразвуковым К. и поведению вещества под действием быстропеременных электрических полей. А. Н. Крылову принадлежат фундаментальные исследования по теории качки корабля. Большое значение в области изучения К., в частности нелинейных К., имели работы советских ученых Л. И. Мандельштама, Н. Д. Папалекси, Н. М. Крылова, Н. Н. Боголюбова, А. А. Андронова и др. Работы А. Н. Колмогорова и А. Я. Хинчина содержат математическую основу теории случайных процессов в колебательных системах, получившей важное практическое значение.
Кинематика колебаний. С точки зрения кинематики можно выделить некоторые важнейшие типы К., где колеблющаяся величина s может быть любой физической природы (механическое смещение твёрдого тела, уплотнение газа, сила тока и т.д.). поясняет общий случай периодического К.; здесь каждое значение s повторяется неограниченное число раз через одинаковые промежутки времени t = T:
s (t+T )=s (t ). (-¥<f<¥).
T называется периодом. Число К. в единицу времени n = 1/Т называется частотой К.
Частными случаями периодических К. являются К. прямоугольные (), пилообразные (), синусоидальные (или гармонические,). В последнем случае s=Acos (wt— j),
где А, w, j — постоянные. Величина А (максимальное значение s ) называется амплитудой. Так как значения cos (wf — j) повторяются при возрастании аргумента на 2p, то wТ =2p и, следовательно,
w=2p/Т=2pn.
Величина w называется круговой, пли циклической, частотой, равна числу К. за 2p единиц времени. Функция времени wt — (называется фазой К., постоянная j — начальной фазой (часто её называют просто фазой). На изображено затухающее К.
s = Ae-dt cos (wt — j),
где А, d, w,j — постоянные. А называется начальной амплитудой, Ae-dt — мгновенным значением амплитуды. d — коэффициент затухания, t= 1/d — временной постоянной (см. также Декремент затухания ). Величина d здесь положительна. При отрицательном знаке d К. является нарастающим. Величины wt — (,w, j имеют те же названия, что и в случае синусоидального К. Хотя затухающее К. не является точно периодическим, величина Т = 2 p/w также называется периодом.
В физике и радиотехнике большое значение имеют модулированные К., то есть К. вида
s=A (t ) cos [ wt— w(t )],
причём функции A (t ), w(t ) меняются медленно по сравнению с coswt (w — постоянная). Если j(t ) = const. то К. называются амплитудно-модулированным (рис. 3 , ж), если A (t ) = const (рис. 3 , з) — модулированным по фазе (или по частоте; см. Модуляция колебаний ). В общем случае () К. модулированы как по амплитуде, так и по фазе. соответствуют периодической амплитудной и фазовой модуляции: A (t ) и j(t) — периодические функции. Важное значение в технике (радиотелефония, телевидение) и в физике имеет случай, когда A (t ) или j(t ), или же обе одновременно являются так называемыми случайными функциями (). Часто в природе и технике встречаются беспорядочные К. (), например белый свет, акустический и электрический «белый» шум и т.п.
Ни в природе, ни в технике никогда не встречаются строго периодические (в частности, строго гармонические) К. Тем не менее гармонические К. весьма важны по двум причинам. 1) В природе и технических устройствах часто возникают К., мало отличающиеся на протяжении достаточно большого времени от гармонических. 2) Многие физические системы, принадлежащие к классу спектральных приборов в широком смысле этого слова или гармонических анализаторов, преобразуют произвольные К. в набор К., близких к гармоническим. Когда говорят о гармонических К., всегда имеют в виду К., лишь близкие к гармоническим. Гармонические К. даже одинаковой физической природы (К. давления воздуха, напряженности электрического поля), но различной частоты могут обладать (наряду с аналогичными) резко различающимися свойствами; они могут совершенно по-разному воздействовать на те или иные физические системы и живые организмы и, в частности, на органы чувств человека и животных (см. Слух , Зрение ).
Возникновение колебаний. Здесь рассматривается возникновение К. в системе, не получающей К. извне, а являющейся источником К. В случае, когда система приходит в К. под действием К., подводимых извне, говорят не о возникновении К., а о воздействии К. на систему и о преобразовании их системой. В пассивных (не содержащих источников энергии) системах такое воздействие вызывает вынужденные колебания . Существует 3 основных типа К. в системах, являющихся источниками К. 1) Свободные (или собственные) К., происходящие, когда система предоставлена самой себе после нарушения равновесия вмешательством извне, например К. пружинного маятника (рис. 1 , б) и К. тока в электрическом контуре (рис. 2 ).
Свободные К. пружинного маятника и колебательного контура относятся к частному типу свободных К. в линейных колебательных системах (то есть системах, обладающих параметрами, практически неизменными, и описываемых с достаточной точностью линейными дифференциальными уравнениями) с одной степенью свободы. В линейных системах с N степенями свободы (N> 1) свободные К. в каждой точке являются суперпозицией N К. (см. Нормальные колебания ). В линейных распределённых системах (если отвлечься от атомистической структуры вещества), например струне, стержне, трубе, а также в электрическом кабеле, объемном резонаторе, свободные К. в каждой точке являются суперпозицией бесконечного числа К. Если восстанавливающая сила, т. е. сила, возвращающая систему к положению равновесия, не пропорциональна отклонению от него, свободные К. описываются нелинейным дифференциальным уравнением, например в случае маятника, когда амплитуду нельзя считать очень малой. Такие системы называются нелинейными. Здесь, в отличие от линейных систем, свободные К. (даже если не учитывать затухания) не синусоидальны, и, кроме того, период их зависит от начальных условий, например у маятника период свободных К. тем больше, чем больше амплитуда. Лишь в пределе, когда она стремится к нулю, система становится линейной, а её К. — изохронными: период не зависит от амплитуды.