Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Акустическая и оптическая ветви. Три первые ветви колебаний с s = 1,2,3 называются акустическими. В случае, когда длина волны l значительно превышает наибольший из периодов пространственной решётки (k — мало), они характеризуются линейным законом дисперсии w = c ·k. Это обычные звуковые волны, а с — фазовая скорость их распространения, зависящая от направления распространения и поляризации. Они плоскополяризованы в одном из трёх взаимно перпендикулярных направлений соответственно трём значениям s = 1, 2, 3 и соответствуют колебаниям кристалла как сплошной среды. В анизотропном кристалле ни одно из этих направлений обычно не совпадает с направлением распространения волны, т. е. с k. Лишь в упругой изотропной среде звуковые волны имеют чисто продольную и чисто поперечную поляризации. Акустические ветви охватывают диапазон частот от нуля до ~ 1013 гц. Однако с уменьшением длины волны закон дисперсии становится более сложным.
Для остальных 3· (n— 1) ветвей частоты смещения атомов в процессе колебаний, соответствующих большой длине волны, происходят так, что центр масс отдельной элементарной ячейки покоится. В ионных кристаллах , элементарная ячейка которых состоит из ионов противоположных знаков, движение такого типа можно возбудить переменным электрическим полем, например световой волной, с частотой, лежащей, как правило, в инфракрасной области. Поэтому эти ветви называются оптическими. Своё название акустическая ветвь получила по начальному участку (), начальный участок акустической ветви — обычный звук.
Фононы. Каждой бегущей плоской волне с вектором k и частотой w можно поставить в соответствие совокупность движущихся квазичастиц с импульсом р =
k и энергией E = w, где — Планка постоянная (см. Корпускулярно-волновой дуализм ). Эти квазичастицы являются квантами поля К. к. р. и называются фононами по аналогии с фотонами — квантами электромагнитного поля.Влияние К. к. р. на свойства кристаллов. Атомы осциллируют около положений равновесия тем интенсивнее, чем выше температура кристалла. Когда амплитуда колебаний превышает некоторое критическое значение, наступает плавление и кристаллическая структура разрушается. С понижением температуры амплитуда уменьшается и становится минимальной при Т = 0 К. Полная остановка атомов с обращением их энергии в нуль, в силу законов квантовой механики , невозможна, и они при Т = 0 К совершают «нулевые» колебания. Так как энергия «нулевых» колебаний обычно недостаточна, чтобы твёрдое тело расплавилось, то с понижением температуры все жидкости рано или поздно затвердевают. Единственным исключением является гелий, который остаётся жидким вплоть до температуры 0 К и затвердевает лишь под давлением.
Количественной характеристикой способности кристалла запасать тепло в виде энергии колебаний служит решеточная теплоёмкость. Будучи отнесённой к одному атому, она оказывается приближённо равной 3kБ (kБ — Больцмана постоянная ) при высоких температурах (Дюлонга и Пти закон ) и пропорциональной Т3 , когда Т приближается к 0 К.
В металлах и полупроводниках , помимо атомов или ионов, имеются также свободные электроны, которые в присутствии электрического поля создают электрический ток. Законы их движения таковы, что они беспрепятственно проходят сквозь идеальный кристалл из ионов, находящихся в состоянии «нулевых» колебаний. Поэтому сопротивление электрическому току при Т =0 К возникает лишь постольку, поскольку в кристаллах всегда имеются дефекты, рассеивающие электроны. Однако при температурах Т > 0 К колебания хаотически нарушают идеальную периодичность решётки и создают дополнительное — решёточное, или фононное, электросопротивление. Сталкиваясь с осциллирующими атомами, электроны передают кристаллическому остову часть энергии своего направленного поступательного движения, которая выделяется в виде джоулева тепла.
Ангармонизм. В действительности возвращающие силы не строго пропорциональны смещениям атомов из положений равновесия и колебания кристалла не являются строго гармоническими (ангармонизм). Нелинейность междуатомных сил мала, поскольку малы амплитуды колебаний. Однако
благодаря ей отдельные нормальные колебания не являются независимыми, а оказываются связанными друг с другом и между ними возможен резонанс, как в системе связанных маятников.
В процессе установления термодинамического равновесия в кристаллах ангармонизм играет ту же роль, что и столкновение частиц в газе. Он, в частности, объясняет тепловое расширение кристаллов, отклонение от Дюлонга и Пти закона в области высоких температур, а также отличие друг от друга изотермических и адиабатических упругих постоянных твёрдого тела и их зависимость от температуры и давления (см. Упругость ).
При неравномерном нагревании твёрдого тела в нём возникают потоки тепла. В металлах большая часть его переносится электронами, а в диэлектриках — нормальными волнами (фононами). Поэтому если иметь в виду диэлектрики или решеточную часть теплопроводности металлов, то в отсутствии ангармонизма тепловой поток распространялся бы со скоростью нормальных волн, то есть приблизительно со скоростью звука. Благодаря ангармонизму волны в тепловом потоке обмениваются энергией и интерферируют друг с другом. В процессе такой интерференции происходит потеря суммарного импульса теплового потока. В результате возникает теплосопротивление, а тепловая энергия переносится с диффузионной скоростью, гораздо меньшей скорости распространения упругой энергии, например звуковой волны. Ангармонизм является также одной из причин затухания ультразвука в кристаллах.
Локальные и квазилокальные колебания. На характер К. к. р. существенно влияют дефекты кристаллической решетки. Жесткость межатомных связей и массы частиц в области дефекта отличаются от таковых для идеального кристалла, называются эталонным или матрицей. В результате этого нормальные волны не являются плоскими. Например, если дефект — это примесный атом массы т , связанный с соседями пружинами жёсткости g , то может случиться, что его собственная частота колебаний
попадёт в запрещенную область частот матрицы. В таком колебании активно участвует лишь примесный атом, поэтому оно и называется локальным. Так как в реальном кристалле дефектов всегда много (см. Дефекты в кристаллах ), то локальное колебание, будучи возбуждённым на одном дефекте, может перейти на другой, как при резонансе одинаковых слабо связанных маятников. Поэтому локальные колебания обладают целым спектром частот, которые образуют примесную зону частот К. к. р.Наряду с локальными колебаниями в области низких частот могут существовать так называемые квазилокальные колебания. В частности, такие колебания есть в кристалле с тяжёлыми примесными атомами. Квазилокальные колебания при низких температурах резко увеличивают решёточную теплоёмкость, коэффициент термического расширения, тепло- и электросопротивления. Так, например, 2—3% примесных атомов, в 10 раз более тяжёлых, чем атомы матрицы, способны при малых Т удвоить решёточную теплоёмкость и коэффициент термического расширения.
Локальные колебания протяжённых дефектов, например дислокации , распространяются вдоль них в виде волн, но в матрицу, как и в случае точечных дефектов, не проникают. Частоты этих колебаний могут принадлежать как запрещенной, так и разрешенной области частот матрицы, отличаясь от них законом дисперсии. Таковы, например, звуковые поверхностные волны, возникающие у плоской границы твёрдого тела (волны Рэлея).