-->

Новый Мир. № 3, 2000

На нашем литературном портале можно бесплатно читать книгу Новый Мир. № 3, 2000, Журнал Новый Мир-- . Жанр: Современная проза. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Новый Мир. № 3, 2000
Название: Новый Мир. № 3, 2000
Дата добавления: 16 январь 2020
Количество просмотров: 172
Читать онлайн

Новый Мир. № 3, 2000 читать книгу онлайн

Новый Мир. № 3, 2000 - читать бесплатно онлайн , автор Журнал Новый Мир
Ежемесячный литературно-художественный журнал

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 54 55 56 57 58 59 60 61 62 ... 99 ВПЕРЕД
Перейти на страницу:

Но когда амплитуда сигнала становится достаточно большой, начинается совершенно новый процесс. Атомы начинают когерентно осциллировать, и само поле становится когерентным, то есть оно не состоит более из отдельных некоррелированных цугов волн, а превращается в одну практически бесконечно длинную синусоиду.

Перед нами типичный пример самоорганизации: временнбая структура когерентной волны возникает без вмешательства извне. На смену хаосу приходит порядок. Подробная математическая теория показывает, что возникающая когерентная световая волна служит своего рода параметром порядка, вынуждающим атомы осциллировать когерентно, или, иначе говоря, подчиняет себе атомы» [6].

В приведенном отрывке мы выделим поначалу одно понятие — самоорганизация. Именно оно является ключевым для понимания сущности синергетики. Синергетику и определяют как науку о самоорганизации или, более развернуто, о самопроизвольном возникновении и самоподдержании упорядоченных временн`ых и пространственных структур в открытых нелинейных системах различной природы.

В описании процесса образования когерентной световой волны Хакен использует целый ряд других основополагающих понятий синергетики. Накачка энергии означает, что рассматриваемая система является открытой, то есть имеет интенсивный приток энергии извне, а также оттоки энергии. Возникающая временнбая или пространственная структура формируется в активной среде и представляет собой выявление одного из потенциально присущих ей дискретных состояний. Система реагирует нелинейно, то есть переход от неорганизованного поведения атомов к слиянию их излучения в когерентную световую волну происходит не плавным путем, в линейной пропорции к увеличению энергии, а скачкообразно — в момент, когда приток энергии превысит определенный барьер. Разрозненное и неупорядоченное поведение отдельных атомов соответствует хаотическому состоянию системы, макроскопическому хаосу, из которого путем фазового перехода рождается порядок. Для всякой системы можно определить параметры порядка, позволяющие описать ее сложное поведение достаточно простым образом, а также выбрать определенные контролирующие параметры, при изменении которых существенно меняется макроскопическое поведение системы. Параметры порядка подчиняют поведение отдельных элементов системы — в чем выражается введенный Хакеном принцип подчинения.

Хакену принадлежит бесспорный приоритет в создании нового термина — «синергетика» — и в разработке системы понятий и теоретических моделей, описывающих механизмы самоорганизации, но не абсолютное первенство в исследовании самих явлений самоорганизации.

В физике эффекты образования устойчивых структур в условиях интенсивного внешнего притока энергии известны весьма давно. Взять классический пример — образование так называемых ячеек Бенара, вызванных конвективными течениями в подогреваемой снизу вязкой жидкости. Этот опыт каждый может воспроизвести у себя дома. Достаточно налить в сковороду толстый слой растительного масла и поставить ее на сильный огонь. Через некоторое время можно будет наблюдать, как нижний, очень горячий слой масла и верхний, не столь горячий, начинают постоянно сменять друг друга в вертикальном течении — но не беспорядочном или распространяющемся сразу на всю емкость, а структурированном в форме правильных шестигранных ячеек, напоминающих пчелиные соты. Пространственные структуры самоорганизации возникают тогда, когда разница температур нижнего и верхнего слоев жидкости достигает определенного порогового значения. Потоки жидкости спонтанно, то есть без всякого организующего воздействия извне, переходят в упорядоченное состояние, соответствующее относительно устойчивым и геометрически правильным формам. Стоит убавить огонь под сковородой, и ячейки снова превратятся в беспорядочные завихрения масла (что не помешает по итогам опыта поджарить в нем колбасу). При более интенсивном нагревании жидкости в ней могут возникнуть более сложные пространственно-временные структуры, например, осцилляции вихрей.

В России на протяжении нескольких десятилетий продуктивно развивается оригинальное направление синергетики, изучающее локализованные структуры горения и тепла, возникающие в сверхбыстрых, лавинообразных эволюционных процессах, в так называемых режимах с обострением. Это направление представлено научной школой академика РАН А. А. Самарского и члена-корреспондента РАН С. П. Курдюмова. Исследуются механизмы формирования локализованных структур (самоорганизации), их трансформации, синтеза (коэволюции) и распада.

Первоначально изучение локализованных структур горения и тепла было связано с практической задачей удержания клубка плазмы в заданных границах с целью получения температуры, необходимой для начала управляемой термоядерной реакции. Корень технической проблемы заключался в том, чтобы уменьшить контакт раскаленной плазмы со стенками реактора и уменьшить энергетические затраты на удерживающие ее магнитные поля.

Вычислительные эксперименты, проведенные в 60-х годах, показали неожиданную вещь: существует такой режим сверхбыстрого сжатия и разогрева плазмы, при котором показатель ее температуры на графике взлетает вверх почти вертикально, стремясь к бесконечности, а вот пространственный объем клубка, то есть островка тепла в окружающем холодном мире, не расползается, оставаясь в первоначальных границах. Получается, что плазма создает границы вокруг себя из самой себя. Этот нелинейный эффект позволяет в десятки тысяч раз снизить энергию, которая требуется для инициирования реакции термоядерного синтеза.

Необычность такого состояния плазменной среды заключается в том, что в любых нормальных условиях потенциал «тепло — холод» стремится к выравниванию, подобно тому как порция холодного молока, влитого в горячий кофе, делает его теплым. А вот синергетика — чем она и привлекательна для пытливых умов, тяготеющих к необычному в окружающем нас мире, — доказывает возможность движения в противоположном направлении: от расползания к локализации тепла, от равновесия к возрастающему неравновесию и созданию структур в состояниях, далеких от равновесия.

Известное нам второе начало термодинамики, говорящее о росте беспорядка (энтропии) в замкнутых системах, теряет свою силу для открытых нелинейных систем, изучаемых синергетикой. Локализованные, быстро развивающиеся структуры существуют за счет возрастающей хаотизации среды, на основе производства в ней энтропии. Структуры горения как бы интенсивно «выжигают» среду вокруг себя. И организация (порядок), и дезорганизация (энтропия) увеличиваются одновременно. Но на пике обострения процесса разогрева и «подбирания» границ тепла структура становится чрезвычайно шаткой, чувствительной к малейшим флуктуациям, случайным изменениям хода процесса. Они способны инициировать распад сложной структуры или же вывести на иной, противоположный режим — режим спада температуры и расползания тепла.

Преджизнь

Важные результаты, касающиеся спонтанного возникновения упорядоченных структур, были получены к началу 70-х годов и в химии. Они связаны в первую очередь с исследованиями, проводимыми в Свободном университете Брюсселя под руководством Ильи Пригожина — бельгийского ученого русского происхождения (в 1927 году в десятилетнем возрасте он был увезен родителями из России), получившего в 1977 году за свои работы в области неравновесной термодинамики Нобелевскую премию.

«В различных экспериментальных условиях, — пишут Илья Пригожин и его соавтор Изабелла Стенгерс, — у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая пространственная дифференциация или образование волн химической активности на макроскопических расстояниях» [7].

Химические часы — пожалуй, самый яркий феномен самоорганизации химических процессов, открытый в начале 50-х годов российскими учеными Б. П. Белоусовым и А. М. Жаботинским. Структура, которая здесь образуется, представляет собой не пространственную, а временнбую структуру — колебание с регулярной периодичностью.

1 ... 54 55 56 57 58 59 60 61 62 ... 99 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название