КВ-приемник мирового уровня? Это очень просто!
КВ-приемник мирового уровня? Это очень просто! читать книгу онлайн
… С чего начать будущему электронщику, какое направление выбрать? Компьютеры, телевизоры, видики?… Но, учитывая их колоссальную сложность и специфику — это задача сомнительная! Правда, можно «лепить» целые системы из готовых компьютерных плат. Но где же тут особое творчество?
Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.
Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.
От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«С»: Для транзисторов с p-каналом это: КП103И; КП103К; 2П103Б и 2П103В. Для n-канала можно выбирать такие транзисторы, как КП303Б, КП303В; КП303А; 2П303А (Б, В). То есть такие, паспортное значение Uотс, которых не превышает 3-х вольт.
«А»: А какого типа следует применять подстроечный резистор?
«С»: Предпочтительнее всего использовать следующие типы многооборотных подстроечных резисторов: СП5-3; СП5-2; СП5-22; СП5-1ВА. Возможно применение и однооборотных СП5-16ВА или СП5-16ВБ. А также подобных им модификаций.
Применение подстроечного резистора дает возможность ТОЧНО установить выходное напряжение. Точно — это значит до единиц милливольт!
«Н»: Но речь шла о ТРЕХ выходных напряжениях, а не о ДВУХ!? Что меняется в стабилизаторе на +7,5 вольт?
«С»: Прежде всего, вполне достаточно иметь на входе не 16, а всего 12 вольт! Схема защиты при этом не претерпевает ровно никаких изменений, кроме одного единственного. В качестве VD1 применяется стабилитрон КС168 или КС175. А вот схема дифференциального усилителя несколько иная. Да вот она (рис. 21.5).
«А»: Здесь в качестве опорного стабилитрона применен ТОЛЬКО один светодиод?
«С»: Этого достаточно вполне.
«Н»: Я хотел еще спросить о том, чего здесь нет!
«А»: Интересный поворот темы! Это не о трансформаторе ли зашла речь?
«Н»: Именно о нем!
«С»: Есть много возможностей! Следует исходить из того, по какому пути проще пойти! Можно, например, взять готовый стандартный трансформатор типа ТПП, имеющий соответствующие вторичные обмотки. Или, скажем, использовать трансформатор одного из следующих типов: ТН-33; ТН-34; ТН-36, и т. п.
Полное наименование: ТН-33-220-50; ТН-34-220-50 и т. д. Очень хорошим решением является изготовление трансформатора-тора. Это, кстати, обойдется в несколько раз дешевле. Можно использовать как самодельный, так и стандартный тороидальный трансформатор.
«А»: Действительно, сейчас можно на радиотолчке приобрести соответствующий по мощности тор с уже намотанной первичной (сетевой) обмоткой. Она обычно содержит 2200 витков. Следовательно, 10 витков на вольт! Намотать три вторичных обмотки на соответствующие выходные напряжения — труда не составит!
«Н»: Ну, это как для кого. А какие нам нужны вторичные напряжения обмоток?
«А»: Исходи из того, что нужны ДВЕ обмотки по 15 вольт и одна на 10 вольт!
«Н»: Но на принципиальной схеме (рис. 21.6) я вижу нечто ИНОЕ? На входах двух стабилизаторов 18 вольт и на входе третьего — 12 вольт?
«А»: Все учтено могучим ураганом! Входные конденсаторы «поднимают» напряжение обмотки, примерно, в 1,3 раза! Но из вновь полученного значения следует вычесть величину несколько превышающую один вольт. Это напряжение теряется на выпрямительных диодах. Как легко убедиться, напряжение на входе первых двух стабилизаторов при этом и будет составлять около 16,5 вольт. А с учетом падения напряжения на активном сопротивлении выходных обмоток — 16 вольт!
«С»: То есть именно то, что и требуется! А теперь следует определиться в токах. Учтите, что максимально допустимая мощность для тора с габаритами 50x20x10 мм составляет 25 ватт!
«А»: А хватит ли этого? Давайте прикинем. Две обмотки по 16 вольт на 0,4 ампера каждая, это 2x15x0,4 = 12 ватт. Одна обмотка на 10 вольт и 0,4 ампера — это 10x0,4 = 4 ватта. Итого: 12 + 4 = 16 ватт!
«С»: Обратите внимание, что тороидальный трансформатор весит в два — три раза меньше, чем адекватный ему по мощности обычного исполнения. И еще одно — КПД тороидального трансформатора обычно не менее 99 процентов! Кроме того, он допускает домотку обмоток, что в трансформаторе обычного типа сделать весьма проблематично!
«Н»: Ну, я для себя вопрос однозначно решил в пользу тора! А вот что относительно количества витков и диаметра провода?
«А»: Поскольку первичная обмотка содержит 10 витков на один вольт, то вторичная — тоже! Откуда следует, что: ВТОРИЧНЫЕ ОБМОТКИ 1 и 2 трансформатора Tp1 содержат по 140 витков. А вторичная обмотка Тр2 содержит 100 витков.
Что касается типа обмоточного провода, то самым подходящим будет являться ПЭВ-2 или ПЭВТЛ-2 диаметром 0,39 мм (во всяком случае не ниже 0,35).
«С»: Я посоветовал бы еще одно. Намотать на челнок, примерно, по ВОСЕМЬ МЕТРОВ этого провода, сложенного вдвое. А затем наматывать тор одновременно. Тогда параметры обмоток 1 и 2 будут одинаковыми. Намотку следует производить аккуратно, равномерно распределяя витки по кольцу.
«Н»: А третью обмотку?
«С»: Ее мы наматываем на другой тор.
«А»: Ну, а как мы поступим с питанием варикапов? Что, мотать на тор еще одну обмотку, но тонким проводом?
«С»: Ни в коем случае! Это не только не нужно, но даже вредно!
«А»: Почему вредно?
«С»: Потому что к напряжению, которое запитывает варикапы, предъявляются совершенно особые требования! Несмотря на смехотворный ток потребления, качество и стабильность напряжения должно быть высочайшим!
«Н»: Стабильность — это я понимаю. А вот что такое КАЧЕСТВО напряжения?
«С»: Этот термин следует понимать таким образом, что АМПЛИТУДА ПУЛЬСАЦИЙ выходного напряжения должна быть ИСЧЕЗАЮЩЕ малой! Так, при напряжении 30 вольт, амплитуда пульсаций не должна превышать десятых долей милливольта!
«А»: А почему так строго?
«С»: Такова суровая правда жизни, о любознательные мои друзья! Это напряжение определяет величину емкости колебательного контура генератора плавного диапазона приемника! И здесь «шутки» просто неуместны! Поэтому поступают следующим образом.
Несколько ранее я уже приводил проверенную и отлично зарекомендовавшую себя ПРАКТИЧЕСКУЮ принципиальную схему получения столь необходимых нам 30 вольт высокого качества из, как говорится, любого источника более низкого напряжения. Вспомните рис. 16.4.
«А»: Схема, я тебя узнал. Именно такую мы применили для той же цели и в первом KB-приемнике! Но мне не совсем ясно, почему генератор низкой частоты для преобразователя вы предложили транзисторный, а не на ОУ?
«С»: Во-первых, потому, что этот генератор имеет ОДНОПОЛЯРНОЕ питание! Что очень удобно!
Во-вторых, схема, при необходимости, имеет резервы использования. Снабжена она и системой автоматической стабилизации амплитуды колебаний!
«Н»: Но лампочка, выступающая элементом системы стабилизации амплитуды, сама светиться не должна?
«С»: Нисколько! Напротив, только исключительно острый глаз, да и то вблизи, в темноте, заметит, что нить лампочки слегка порозовела! Смысл применения этой микролампочки заключается в следующем. Для получения гармонических колебаний с МАЛЫМИ ИСКАЖЕНИЯМИ используют инерционно-нелинейную цепь отрицательной обратной связи. Нужный характер нелинейности обеспечивается тогда, когда с ростом амплитуды сигнала уменьшается сопротивление в цепи эмиттера транзистора задающего генератора.
«А»: То есть получается, что лампочка играет роль терморезистора?
«С»: И с величайшим успехом! На транзисторах VT3,VT4,VT5 и VT6 собран симметричный оконечный каскад генератора. Цепь обратной связи поддерживает высокую стабильность работы генератора в достаточно широком диапазоне температур.
«А»: А какие элементы данной схемы определяют рабочую частоту?
«С»: Прежде всего, это конденсатор С1. В представленном на схеме варианте, генератор выдает частоту около 8 кГц. Каскад, собранный на VT7, посредством повышающего трансформатора (собранного на ферритовом колечке) и высококачественного мостового выпрямителя, в качестве которого применена матрица 2Д906А (Б), позволяет получить напряжение около 35 вольт.