Материаловедение. Шпаргалка
Материаловедение. Шпаргалка читать книгу онлайн
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Для того чтобы получить спеченные детали из порошковой стали, используются смеси порошков железа и легирующих порошков, а также порошки углеродистых и легированных сталей. Способы получения порошковых сталей: холодное прессование и спекание; двойное прессование и спекание; горячее прессование; горячая штамповка. Термическая обработка порошковых сталей осуществляется в специальных защитных средах. С целью предотвращения процесса окисления для охлаждения сталей используется масло или вода. Порошковые стали имеют один характерный структурный элемент – поры. Чем больше пористость материала, тем ниже плотность, прочность и ударная вязкость стали. Но многие характеристики материалов зависят от пористости не монотонно. Так, трещиностойкость и ударная вязкость порошкового железа изменяется немонотонно в зависимости от пористости.
Широкое распространение в современном машиностроении получили порошковые спеченные антифрикционные материалы, приготовляемые с использованием медной и стальных матриц. Для приготовления более прочных и качественных материалов используются специальные добавки: фтористый кальций, графит, турбост-ратный нитрид бора. В результате после процесса спекания образуется пористая структура. В поровых каналах данной структуры могут сохраняться частицы масла и другие жидкие смазки. Материалы с пористой структурой являются наиболее подходящими для замены бронзовых и баббитовых металлических антифрикционных сплавов, которые достаточно дорогостоящие в применении.
В порошковой металлургии производится минералокерамика, которая получается при использовании железа, кобальта и других тугоплавких металлов. Изделия из бериллия также изготавливаются методами порошковой металлургии. Процесс изготовления: формование и спекание, горячая пластическая деформация.
51. Неорганические стекла. Техническая керамика
Неорганическое стекло – химически сложные аморфные изотропные материалы, обладающие свойствами хрупкого твердого тела.
Стекла состоят:
1. Стеклообразователи – основа:
а) Si02 – силикатное стекло, если Si02 > 99 %, то это кварцевое стекло;
б) AI2O3 + Si02 – алюмосиликатное стекло;
в) B23 + Si02 – боросиликатное стекло;
г) AI23 + B23 + Si02 – алюмоборосиликатное стекло;
2. Модификаторы, вводятся для придания стеклу определенных свойств. Ввод оксидов щелочноземельных металлов (I, II группа: Na, K) уменьшает температуру размягчения. Оксиды хрома, железа, ванадия придают стеклу определенные цвета. Оксиды свинца увеличивают коэффициент преломления. В зависимости от количества модификаторов стекла бывают: щелочные с содержанием модификаторов до 20–30 %, бесщелочные – до 5 % модификаторов, кварцевое стекло – модификаторов нет;
3. Компенсаторы, подавляют негативное воздействие модификаторов. Стекла в автомобилях, в стеклопластиках, оптика, теплопроводимость низкая, не растворимы в кислотах и щелочах.
Свойства стекол: стекла отличаются высокой твердостью и пределом прочности. Теоретически предел прочности достигает 10–12 ГПа. Модуль упругости E = 70 ГПа. Твердость по Виккерсу HV ~ 750 кгс/мм2. Практически предел прочности – 50-100 МПа. Низкий аВ объясняется факторами: высокий коэффициент линейного расширения. С остыванием стекла на его поверхности образуются растягивающие напряжения, что приводит к появлению трещин. Стекло – хороший теплоизолятор, что также приводит к образованию трещин. Стекло не сопротивляется динамическим нагрузкам.
Способы упрочнения стекол:
1) травление для удаления дефектного поверхностного слоя. Предел прочности увеличивается до 3000 МПа. Малоэффективный способ, т. к. в дальнейшем стекло взаимодействует с абразивными частицами или твердыми материалами;
2) создание на поверхности сжимающих напряжений. Для этого проводят закалку, осуществляют нагрев до определенной температуры, затем охлаждают в заданном режиме (температура нагревания, охлаждение и время выдержки). Предел прочности увеличивается до 1000–1500 МПа;
3) нанесение на поверхность стекол полимерных материалов. Полимерное связующее склеивает микротрещины на поверхности стекла.
Кварцевое стекло обладает высокой газопроницаемостью (гелий, водород, неон) по сравнению с другими силикатными стеклами, в составе которых кроме диоксида кремния присутствуют оксиды щелочных и щелочноземельных металлов.
Два параметра, объединяющих структуру двойных фосфатных стекол со структурой двойных силикатных стекол: структурной основной единицей являются тетраэдрические элементокислородные группировки; при добавлении модифицирующих оксидов увеличивается число не мостиковых атомов кислорода.
Затвердение и плавление стекла происходит постепенно в некотором температурном интервале. Поэтому не существует определенная температура затвердевания или плавления. В процессе охлаждения расплав переходит из жидкого в пластическое состояние, а после этого – в твердое (процесс стеклования).
Органические стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, находящиеся в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению органические стекла отличаются от неорганических.
Элементарные стекла способны образовывать небольшое число элементов – сера, селен, мышьяк, фосфор, углерод.
Галогенидные стекла получают на основе стеклообразующего компонента BeF2. Многокомпонентные составы фторбериллатных стекол включают в себя фториды алюминия, кальция, магния, стронция, бария. Фторбериллатные стекла широко применяются на практике из-за высокой устойчивости к действию жестких излучений, включая рентгеновские лучи, и таких агрессивных сред, как фтор и фтористый водород.
Промышленное значение приобретают способы получения стекол путем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.
Керамика – неорганический материал, получаемый отформованнием масс в процессе высокотемпературного обжига. Оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе. Более прочными являются мелкокристаллические структуры. С повышением температуры прочность керамики понижается. Керамика из чистых оксидов не подвержена процессу окисления.
Бескислородная керамика. Материалы являются очень хрупкими. Сопротивление окислению при высоких температурах карбидов и боридов составляет 900-1000 °C, у нитридов оно ниже. Силициды выдерживают температуру 1300–1700 °C. При таких температурах на поверхности образуется пленка кремнезема.
52. Полимеры, пластмассы
Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.
В молекулах полимеров различают главную цепь, которая построена из большого числа атомов. Боковые цепи имеют меньшую протяженность.
Полимеры, главная цепь которых содержит одинаковые атомы, называют гомоцепными, а если атомы углерода – карбоцепными. Полимеры, в главной цепи которых содержатся различные атомы, называют гетероцепными.
Макромолекулы полимеров по форме делят на линейные, разветвленные, плоские, ленточные, пространственные или сетчатые.
Линейные макромолекулы полимера – длинные зигзагообразные и скрученные в спираль цепочки, которым присуща гибкость, ограничивающаяся жесткими участками – сегментами, состоящими из нескольких звеньев. Такие макромолекулы обладают высокой прочностью вдоль главной цепи, слабо связаны между собой и обеспечивают высокую эластичность материала. Нагрев вызывает размягчение, а последующее охлаждение – затвердевание полимера (полиамид, полиэтилен).