Материаловедение. Шпаргалка
Материаловедение. Шпаргалка читать книгу онлайн
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Медь и ее сплавы находят широкое применение в электротехнике, электронике, приборостроении, литейном производстве, двигателестроении. Так, 50 % полученной меди потребляется электротехнической и электронной отраслями промышленности. Она стоит на втором месте (вслед за алюминием) по объему производства среди цветных металлов.
Технические и технологические свойства меди: высокие электро– и теплопроводность, достаточная коррозионная стойкость, хорошая обрабатываемость давлением, свариваемость всеми видами сварки, хорошо поддается пайке, легко полируется. У чистой меди небольшая прочность и высокая пластичность. К недостаткам меди относятся:
– высокая стоимость;
– значительная плотность;
– большая усадка при литье;
– горячеломкость;
– сложность обработки резанием.
46. Магний и его сплавы
Магний является химически активным металлом: образующаяся на воздухе оксидная пленка МдО в силу более высокой плотности, чем у самого магния, растрескивается и не имеет защитных свойств; порошок и стружка магния легко воспламеняются; горячий и расплавленный магний при контакте с водой происходит взрыв.
Магний и его сплавы плохо сопротивляются коррозии, обладают пониженной жидкотекучестью при литье, пластически деформируются лишь при повышенных температурах (225 °C и более). Последнее обусловлено тем, что сдвиг в гексагональной решетке магния при низких температурах осуществляется лишь по плоскости базиса (основание шестигранной призмы). Нагрев до 200–300 °C приводит к появлению дополнительных плоскостей скольжения и, соответственно, повышению пластичности. Малая диффузионная подвижность атомов в магниевых сплавах приводит к замедлению фазовых превращений в них. Поэтому термическая обработка (диффузионный или рекристаллизационный отжиг, закалка, старение) требует больших выдержек (до 24 ч).
В то же время магниевые сплавы характеризуются высокой удельной прочностью, хорошо поглощают вибрации, не взаимодействуют с ураном. Они хорошо обрабатываются резанием и удовлетворительно свариваются аргонодуговой и контактной
сваркой. Основными легирующими элементами в магниевых сплавах являются Мп, Al и Zn.
Марганец повышает коррозионную стойкость и свариваемость сплавов магния. Алюминий и цинк оказывают большое влияние на прочность и пластичность магниевых сплавов: максимальные значения механических характеристик достигаются при введении в сплав 6–7% алюминия или 4–6% цинка. Эти элементы (Al, Zn) образуют с магнием упрочняющие фазы, выделяющиеся в мелкодисперсном виде после закалки со старением.
Цирконий, титан, щелочноземельные (Са) и редкоземельные (Се, 1а) металлы и торий измельчают зерно, раскисляют сплав, повышают его жаропрочность.
По технологии изготовления изделий магниевые сплавы разделяют на литейные (маркировка «МЛ») и деформируемые («МА»). Магниевые сплавы подвергаются различным видам термической обработки.
Так, для устранения ликвации в литых сплавах (растворения выделившихся при литые избыточных фаз и выравнивания химического состава по объему зерен) проводят диффузионный отжиг (гомогенизацию) фасонных отливок и слитков (400–490 °C, 10–24 ч). Наклеп снимают рекристаллизационным отжигом при 250–350 "С, в процессе которого уменьшается также анизотропия механических свойств, возникшая при пластической деформации.
Магниевые сплавы в зависимости от состава могут упрочняться закалкой (часто с охлаждением на воздухе) и последующим старением при 150–200 о С (режим Тб). Ряд сплавов закаливается уже в процессе охлаждения отливок или поковок и может сразу упрочняться искусственным старением (минуя закалку). Но в большинстве случаев ограничиваются только гомогенизацией (закалкой) при 380–540 °C (режим Т4), т. к. последующее старение, повышая на 20–35 % прочность, приводит к снижению пластичности сплавов. Литейные сплавы.
В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна посредством перегрева расплава или его модифицирования добавками мела или магнезита.
При этом в расплаве образуются твердые частицы, становящиеся центрами кристаллизации. Для предотвращения возгорания магниевых сплавов их плавку ведут в железных тиглях под слоем флюса, а разливку – в парах сернистого газа, образующегося при введении серы в струю металла. При литье в песчаные формы в смесь вводят специальные добавки (фториды алюминия) для уменьшения окисления магния. Среди литейных магниевых сплавов широкое применение нашли сплавы МЛ5 и МЛ6, отличающиеся повышенными литейными и механическими свойствами. Они могут упрочняться как гомогенизацией и закалкой на воздухе (Т4), так и добавочным старением (Т6).
Деформируемые сплавы.
Деформированный (прессованный) магний обладает более высоким комплексом механических свойств, чем литой.
Деформируемые сплавы производят в виде поковок, штамповых заготовок, горячекатаных полос, прутков и профилей. Температурные интервалы технологических процессов обработки давлением магниевых сплавов находятся в следующих пределах: прессование при 300–480 °C, прокатка при 440–225 °C и штамповка (в закрытых штампах) при 480–280 °C. Хорошей коррозионной стойкостью, свариваемостью и технологической пластичностью отличается сплав МА1, относящийся к группе сплавов низкой прочности.
Сплав МА2-1 сочетает в себе оптимальный комплекс механических и технологических свойств (хорошо сваривается, штампуется), но подвержен коррозии под напряжением. Жаропрочным (до 250 °C) является сплав системы (Мд-Zn-Zr) МА14. Сплав упрочняется искусственным старением (режим Т5) после прессования и охлаждения на воздухе. Он характеризуется повышенными механическими свойствами, но склонен к образованию при прокатке горячих трещин.
Применение магниевых сплавов. Из сплавов магния изготавливают корпуса ракет, насосов, приборов, топливные и кислородные баки, рамы двигателя, кожухи. Так, сплавы МЛ5 и МЛ6 используются для литья тормозных барабанов, штурвалов, коробок передач, МЛ10 – деталей приборов высокой герметичности.
Арматуры, бензо– и маслосистемы, а также сварные детали изготавливают из деформируемых сплавов МА1, высоконагруженные детали – из МА14.
47. Титан и его сплавы
Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.
Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.
Аллотропические модификации титана: низкотемпературная и высокотемпературная.
Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения – А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, – V, Мо, Сг).
Легирующие элементы делятся на две основные группы: элементы с большой (в пределе – неограниченной) и ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.
Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та – коррозионную стойкость.
Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов в б– и в-модификациях титана.
Виды термической обработки титановых сплавов.
Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650–850 °C).