Материаловедение. Шпаргалка
Материаловедение. Шпаргалка читать книгу онлайн
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Искусственное старение – это повышение прочности, происходящее в процессе выдержки при повышенных температурах. Если закаленный сплав, имеющий структуру пересыщенного твердого раствора, подвергнуть пластической деформации, то это ускоряет протекающие при старении процессы. Этот вид старения носит название деформационного. Термическая обработка алюминиевых сплавов состоит из двух циклов – закалки и старения. Старение охватывает все процессы, происходящие в пересыщенном твердом растворе, – процессы, подготавливающие выделение, и процессы выделения. Превращение, при котором происходят только процессы выделения, называется дисперсионным твердением.
Для практики большое значение имеет инкубационный период – время, в течение которого в закаленном сплаве совершаются подготовительные процессы, время, в течение которого закаленный сплав сохраняет высокую пластичность. Это позволяет проводить холодную деформацию непосредственно после закалки.
Если при старении происходят только процессы выделения, без сложных подготовительных процессов, то такое явление называют дисперсионным твердением.
Практическое значение явления старения сплавов очень велико. Так, после старения увеличивается прочность и уменьшается пластичность низкоуглеродистой стали в результате дисперсных выделений в феррите цементита третичного и нитридов.
Старение является основным способом упрочнения алюминиевых сплавов, некоторых сплавов меди, а также многих жаропрочных и других сплавов. В настоящее время все более широко используют мартенситностарею-щие сплавы.
Сегодня достаточно часто вместо термина «естественное старение» используют термин – «низкотемпературное старение», а вместо «искусственного старения» – «высокотемпературное старение». Самыми первыми металлами, которые были упрочнены при помощи старения, были алюминиевые сплавы. Упрочнение проводилось при температурах выше 100 °C.
В разных температурных интервалах наблюдаются различия в процессе распада. Поэтому для получения оптимального комплекса свойств в сплавах применяется сложное старение, проходящее в определенной последовательности, при низких и более высоких температурах.
Старение сплавов, вызванное процессом распада пресыщенного твердого раствора, является наиболее важным. После охлаждения сплавов появляется состояние пресыщения твердого раствора. Это вызвано тем, что при высокой температуре увеличивается растворимость примесей и легирующих компонентов.
40. Классификация и маркировка легированных сталей. Влияние легирующих элементов на превращения, микроструктуру и свойства стали; принципы разработки легированных сталей
Легированная сталь – это сталь, которая содержит кроме углерода и обычных примесей, другие элементы, улучшающие ее свойства.
Для легирования стали применяют хром, никель, марганец, кремний, вольфрам, молибден, ванадий, кобальт, титан, алюминий, медь и другие элементы. Марганец считается легирующим компонентом лишь при содержании его в стали более 1 %, а кремний – при содержании более 0,8 %.
В сталь вводятся легирующие элементы, которые изменяют ее механические, физические и химические свойства, а также в зависимости от назначения стали в нее вводят элементы, изменяющие свойства в нужном направлении.
Легированная сталь многих марок приобретает высокие физико-механические свойства только после термической обработки.
По суммарному количеству легирующих элементов, которые содержатся в стали, она делится на низколегированную (суммарное содержание легирующих элементов менее 2,5 %) среднелегированную (от 2,5 до 10 %) и высоколегированную (более 10 %).
Недостатком углеродистой стали является то, что эта сталь не обладает нужным сочетанием механических свойств. С увеличением содержания углерода увеличиваются прочность и твердость, но одновременно резко уменьшаются пластичность и вязкость, растет хрупкость. Режущие инструменты из углеродистой стали очень хрупки и непригодны для выполнения операции с ударной нагрузкой на инструмент.
Углеродистая сталь часто не отвечает требованиям ответственного машиностроения и инструментального производства. В таких случаях необходимо применять легированную сталь.
Легирующие элементы по отношению к углероду разделяются на две группы:
1) элементы, которые образуют с углеродом устойчивые химические соединения – карбиды (хром, марганец, молибден, вольфрам, титан); карбиды могут быть простые (например, Сг4 С) или сложные легированные (например, ((FеСг)7С3); твердость их обычно выше твердости карбида железа, а хрупкость ниже;
2) элементы, не образующие в присутствии железа карбидов и входящие в твердый раствор – феррит (никель, кремний, кобальт, алюминий, медь).
По назначению легированную сталь делят на конструкционную, инструментальную и сталь с особыми физикохимическими свойствами.
Конструкционную сталь применяют для изготовления деталей машин; она делится на цементируемую (подвергаемую цементации) и улучшаемую (подвергаемую улучшению – закалке и высокому отпуску). К сталям с особыми свойствами относят: нержавеющие, жаростойкие, кислотостойкие, износоустойчивые, с особыми магнитными и электрическими свойствами.
Маркировка по ГОСТ для обозначения легирующих элементов: Х – хром, Н – никель, Г – марганец, С – кремний, В – вольфрам, М – молибден, К – кобальт.
Для стали конструкционной легированной принята маркировка, по которой первые две цифры показывают среднее содержание углерода в сотых долях процента, буквы – наличие соответствующих легирующих элементов, а цифры, следующие за буквами, – процентное содержание этих компонентов в стали. Если после какой-либо буквы отсутствует цифра, то содержание данного элемента в стали примерно равно 1 %. Если цифра отсутствует, то сталь содержит около или более 1 % углерода.
Для обозначения высококачественной стали в конце маркировки добавляют букву А. Высококачественная сталь содержит меньше серы и фосфора, чем обычная качественная.
Стали специального назначения имеют особую маркировку из букв, которые ставятся впереди: Ш – шарикоподшипниковая, Р – быстрорежущая, Ж – хромовая нержавеющая ферритного класса, Я – хромоникелевая нержавеющая аустенитного класса, Е – электротехническая сталь.
Многие стали можно отнести к машиностроительным материалам, которые обладают достаточно высокими прочностными качествами. К таким сталям относятся: углеродистые стали, низголегированные стали, высокопрочностные среднелегированные стали, высокопрочные высоколегированные (мартенситно – стареющие) стали.
Все легированные стали можно разделить на группы в зависимости от четырех признаков: по равновесной структуре стали, по структуре после охлаждения стали на воздухе, по составу стали, по назначению стали.
В зависимости от того, какое количество углерода содержится в стали, различают следующие виды: малоуглеродистые до 0.1–0.2 %, среднеуглеродистые и высокоуглеродистые 0.6–1.7 % С.
Структура сталей может быть доэвтектоидной (феррит + перлит), эвтектоидной (перлит) и заэвтектоидной (перлит + цементит) стали.
Существует три способа выплавки стали: кипящий, полуспокойный, спокойный способы. При кипящем способе в структуре стали содержатся в большом количестве газовые пузыри, которые являются результатом раскисления стали в изложницах и выделения СО.
Стали также получают при использовании конвертеров, электропечей, установки непрерывной разливки.
41. Конструкционные стали: строительные, машиностроительные, высокопрочные. Инструментальные стали: стали для режущего инструмента, подшипниковые, штамповые
Углеродистые инструментальные стали У8, У10, У11,У12 вследствие малой устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, их применяют для инструментов небольших размеров.
Стали У10, У11, У12 применяют для режущего инструмента (сверла, напильники), У7 и У8 – для деревообрабатывающего инструмента. Стали можно использовать в качестве режущего инструмента только для резания с малой скоростью, так как их высокая твердость (У10-У12-62-63НРС) сильно снижается при нагреве выше 190–200 °C.