Юный техник, 2012 № 09
Юный техник, 2012 № 09 читать книгу онлайн
Популярный детский и юношеский журнал.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«При этом ледокол сможет проделывать проход во льду шириной около 50 метров», — сообщают финские специалисты из компании Aker Arctic Technology, которые и выдвинули идею косоходного ледокола в конце 90-х годов прошлого века.
Судно также будет оснащено специальным оборудованием для ликвидации аварийных разливов нефти, тушения пожаров, экологического мониторинга. Оно способно продвигаться в ровном льду толщиной один метр, благодаря общей мощности трех дизельных генераторов в 9 МВт.
Левый борт этого ледокола более выпуклый, нежели правый, — сообщают специалисты. Двигаясь им вперед, этот небольшой ледокол будет способен пробивать фарватер, позволяющий проводить даже супертанкеры водоизмещением в 120–170 тыс. т.
Судно предназначено для эксплуатации в сложных субарктических условиях, которые бывают зимою в восточной части Финского залива. Испытания нового судна планируется начать в феврале — марте 2014 года, то есть как раз 150 лет спустя после появления на Балтике «Пайлота» купца Бритнева.
И.ЗВЕРЕВ
ВОЗВРАЩАЯСЬ К НАПЕЧАТАННОМУ
Сам себе ремонтник?
Мы уже рассказывали вам о попытках исследователей создать саморемонтирующиеся материалы (см. «ЮТ» № 5 за 2012 г.). Однако тема оказалась настолько модной и насущно необходимой, что сообщения о новых исследованиях все продолжают поступать.
…То, что показал весной нынешнего года на заседании Американского химического общества профессор Университета Южного Миссисипи Марк Урбан, напоминало некий фокус. Он взял кусочек пластика и провел по нему ножом. И на глазах у всех присутствующих произошло маленькое чудо — царапина вдруг стала красной, как будто из нее выступила кровь, и постепенно начала затягиваться.
Эффект от внедрения такого материала в промышленность и обиход даст эффект, пожалуй, посильнее, чем демонстрации кусочка искусственной кожи, которую даже пуля не берет (см. подробности в «ЮТ» № 12 за 2011 г.). Саморемонтирующий материал понравится производителям и пользователям во многих отраслях техники и быта, уверен профессор. «Вечная» посуда, мобильные телефоны и ноутбуки, которые можно ронять сколько угодно — это меньшее из возможного.
К примеру, вовремя залеченное повреждение обшивки самолета, ракеты, корабля или подводной лодки поможет спасти сотни жизней. А саморемонтирующиеся на ходу, возрождающиеся, словно феникс из пепла, танки и прочая техника — давняя мечта военных.
Замена металла, стекла и бумаги пластиком стала в последнее время повсеместным явлением, отмечает Марк Урбан. Прежде всего синтетику ценят за прочность, малый вес и противодействие коррозии. Но и недостаток у большинства пластиков существенный: как только, скажем, автомобильное крыло получит повреждение при столкновении, его приходится менять целиком.
И вот теперь появляется саморемонтирующийся пластик. Как он действует? Вариантов, по крайней мере, два. В первом предполагается наличие в структуре особых капсул; при появлении царапины они лопаются и выделяют «лечащие» компоненты, которые со временем застывает на воздухе, ремонтируя повреждение. Во втором — восстановление начинается по команде со стороны. Команда М. Урбана пошла именно по этому пути, в качестве катализатора реакции используется солнечный свет, который попадает внутрь структуры материала только при ее нарушении.
Второй метод имеет преимущества перед первым хотя бы потому, что при включенных в материал лечебных компонентах от царапины можно избавиться лишь считаное число раз. В случае М. Урбана чисто теоретически число реабилитационных процедур не ограничено.
«Мать-природа наделила все биологические системы способностью к самовосстановлению», — заявил профессор журналистам. — К примеру, возьмите дерево. Если нанести ему повреждение, то на месте пореза образуется новая кора. А вспомните, как у нас с вами сами собой зарастают мелкие порезы и царапины… Некоторые системы невидимы для человеческого глаза. Одна из них позволяет ДНК «чинить генетические ошибки в генах. Теперь мы хотим научить тому же и произведенные нами синтетические материалы…»
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Карта темной материи
Астрономам удалось узреть невидимое. Несколько групп исследователей совместными усилиями начали составлять карту распределения темной материи во Вселенной.
Темная материя, как известно, — это невидимое вещество, которое проявляет себя исключительно благодаря гравитационному взаимодействию с галактиками.
На ее долю, согласно расчетам, приходится около 23 % общей массы Вселенной, в то время как «обычная» материя составляет лишь около 4 % массы. Все остальное приходится на не менее загадочную темную энергию.
О существовании темной материи и темной энергии, напомним, ученые догадались по косвенным фактам.
Согласно их расчетам, звездные объекты — галактики и их скопления — должны перемещаться, постепенно замедляя свое ускорение, полученное в результате Большого взрыва. Однако, как показали недавние спектральные замеры, дело обстоит как раз наоборот: чем дальше галактики удаляются от центра, тем выше становится их скорость.
Так получается потому, полагают теоретики, что темная материя воздействует на звездные тела своим гравитационным притяжением. А темная энергия, похоже, обладает свойствами антигравитации, то есть отталкивает от себя небесные тела.
Но если темная материя имеет столь огромную, хотя и невидимую массу, она должна где-то располагаться.
Где именно?
«Наши теории о темной материи исходят из того, что она должна образовывать сложную ячеистую структуру в глубинах космоса, между видимыми галактическими скоплениями, — рассказывает доктор Кэтрин Хейманс из Эдинбургского университета. — Общая теория гравитации Эйнштейна постулирует, что гравитация искажает пространство и время, поэтому по форме этих искажений мы можем делать выводы о существовании во Вселенной концентраций темной материи. Она как бы оставляет свою роспись на изображениях очень отдаленных галактик».
Современные оптические телескопы позволяют получить крупномасштабные карты звездного неба.
Астрономы франко-канадской обсерватории на Гавайских островах опубликовали самые крупномасштабные снимки космических объектов, указывающие на существование темной материи. Каждый снимок отображает участок неба протяженностью в миллиард световых лет.
Астрономы видят на снимках следы искажения гравитацией света дальних звезд, которые могут указывать на воздействие темной материи.
Четыре снимка были сделаны в разное время года; на них уместились изображения более 10 млн. галактик, свет которых подвергается гравитационному искажению. Масштаб изображений примерно в 100 раз превышает масштаб сходных фотографий, полученных с помощью орбитального телескопа «Хаббл» в рамках эксперимента Cosmic Evolution Survey (исследования по космической эволюции).
Кроме того, в своих работах Джеймс Аннис и его коллеги из Национальной лаборатории имени Ферми, а также коллектив под руководством Эрика Хаффа из университета Калифорнии в Беркли использовали материалы из последней коллекции так называемого Слоановского цифрового обзора неба (SDSS).
Проект SDSS начал свою работу в 2000 году. Его цель — картографирование всего ночного неба в Северном и Южном полушариях Земли. Основной инструмент исследований — 2,5-метровый широкоугольный телескоп американской обсерватории Апашпойнт. Сейчас уже картографировано около 35 % площади ночного неба.