CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии читать книгу онлайн
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 3.15. Поперечное сечение объектива с ручной установкой диафрагмы
Как уже упоминалось выше, сферическая аберрация — это общий тип искажения, присущий большинству линз сферического типа. Линзы сферического типа наиболее распространены, поскольку изготавливаются они при помощи самых простых механических способов шлифовки и полировки, подчиняющихся сферическим законам. Полировка выполняется круговой машиной, в результате чего линза имеет сферическую форму. Можно показать, что кроме хроматической аберрации, присущей простому оптическому элементу («разложение на цвета» белого света), есть еще и сферическая аберрация, вызванная сферическим профилем линзы. Фокус не является в точности одной точкой.
На основе физических законов преломления можно показать (но мы не будем вдаваться в эти детали), что колоколоподобная линза (не сферическая) является идеальной для получения единой фокусной точки без сферических искажений. Поперечное сечение такой линзы представляет собой кривую, несколько отклоняющуюся от формы окружности и имеющую форму колокола.
Это продемонстрировано на рис. 3.16, и чтобы было понятнее — в преувеличенной форме. Такая линза называется асферической.
Рис. 3.16. Сферическая и асферическая линзы
Понятно, что такую форму трудно воспроизвести при помощи стандартных полировочных технологий, но, если все-таки обеспечить качественное изготовление, она даст ряд преимуществ в сравнении с традиционными сферическими линзами, включая больший раскрыв диафрагмы (что отражается в меньших значениях F-числа), больший угол зрения, более короткое минимальное расстояние до объекта, меньшее количество оптических элементов, так как приходится исправлять меньше аберраций (в результате объектив становится меньше и легче).
Однако такая технология дороже — из-за сложной техники полировки.
Оптические компании начали выпускать литые асферические линзы, избегая критического процесса шлифования. Этот процесс, правда, не обеспечивает стекла такого качества, как при обычном процессе, но позволяет сделать производство асферических объективов более экономичным.
Качество таких объективов еще нуждается в доказательствах, но они существуют и доступны на рынке оборудования для систем видеонаблюдения.
Рис. 3.17. Асферический объектив с автодиафрагмой
Что нам нужно от объектива — это резкое и четкое изображение, свободное от искажений.
Как уже упоминалось, объективы обладают ограниченной разрешающей способностью, и об этом особенно важно помнить, когда мы используем их в видеосистемах высокого разрешения.
Разрешающая способность связана со способностью линзы воспроизводить мелкие детали. Чтобы измерить эту способность, используется испытательная таблица, состоящая из черных и белых полосок с различной плотностью (пространственным периодом), обычно выражаемую в линиях на миллиметр (линий/мм). При подсчете разрешающей способности линзы (линий/мм) мы учитываем и белые, и черные линии.
Рис. 3.18. Частотно-контрастная характеристика — 4KX (CTF, contrast transfer function) и функция передачи модуляции — ФПМ (MTF, modulation transfer function)
Характеристика, демонстрирующая «отклик» линзы на различную величину плотности в линиях/мм, называется частотно-контрастной характеристикой (ЧКХ).
С теоретической точки зрения лучше оценивать параметры линзы при непрерывном переходе от черного к бепому (в виде синусоиды), а не на полосках, которые резко переходят от черного к бепому. В особой мере это относится к объективам, используемым в телевидении, так как оптический сигнап в этом спучае преобразуется в эпектрический, который пегче описывается и оценивается при помощи синусоидапьных характеристик. Эта характеристика называется функцией передачи модуляции (ФПМ).
Однако на практике оказывается гораздо проще сделать тестовую таблицу с черно-белыми полосками, а не с синусоидапьным переходом от черного к бепому. ЧКХ и ФПМ — это не одно и то же, но при помощи ЧКХ гораздо проще измерить и с достаточно большой точностью можно описать обобщенные характеристики линзы.
Самая простая анапогия, которая поможет нам понять, что такое ФПМ, — это спектральный отклик аудиосистемы. В аудиосистеме мы рассматриваем уровень выхода (напряжение или звуковое давление) в зависимости от частоты аудиосигнала. В оптике мы депаем то же самое, только ФПМ выражается в виде зависимости контрастности (от 0 до 100 %) от пространственной ппотности (в пиниях/мм), как мы видели на рис. 3.18.
Различные объективы имеют различные ФПМ-характеристики в зависимости от качества стекла, оптической конструкции и применения. Например, фотографические объективы будут иметь лучшую ФПМ, чем объективы для видеонаблюдения. Причина проста: структура фотопленки может регистрировать более 120 линий/мм, и производителям приходится выпускать объективы более высокого качества, чтобы минимизировать ухудшение картинки при увеличении изображения на пленке до размеров постера.
ПЗС-матрицы имеют меньшую разрешающую способность, чем ту, которую обеспечивает кристаллическая структура пленки. С технической точки зрения нет никакой необходимости переходить на производство дорогих объективов намного большего разрешения, чем разрешающая способность ПЗС-матрицы. Однако с миниатюризацией ПЗС-матриц мы все ближе и ближе подходим к границам пленочного разрешения, так что в будущем потребуются объективы с улучшенными параметрами.
Например, черно-белая ПЗС-матрица формата 1/2" среднего разрешения имеет примерно 500 пиксел (элементов изображения) по горизонтали. Если мы учтем физическую ширину 6.4 мм ПЗС-матрицы формата 1/2", то придем к заключению, что максимальное возможное число вертикальных линий (черно-белых пар) равно (500:6.4):2 = 39 линий/мм. Это разрешение легко достигается большинством ТВ-объективов, так как оптическая технология может легко обеспечивать более 50 линий/мм. Но для черно-белой ПЗС-матрицы формата 1/3" с той же плотностью в 500 пикселов по горизонтали мы уже говорим о (500:4.4):2 = 57 линий/мм. Это значит что ПЗС-телекамера формата 1/3" требует объектива большего разрешения, чем телекамера формата 1/2".
Различные объективы имеют различные ФПМ-характеристики, и иногда на основе этих характеристик приходится решать, какой объектив следует использовать.
Рассмотрим пример, представленный на графике. Мы можем трактовать его следующим образом: ФПМ объектива А распространяется на область высоких пространственных частот, а это означает, что он может передать более мелкие детали, чем объектив В. Объектив В имеет лучший отклик на низких частотах. Если нам нужен объектив для получения высокой разрешающей способности, например, для пленки, то лучше выбрать объектив А, а для видеонаблюдения, где ПЗС-матрица не может различить более 50 линий/мм, лучше обойтись объективом В, с ним будет выше контраст.
Рис. 3.19. ФПМ-кривые для двух различных объективов