CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии читать книгу онлайн
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Сегодня, в век компьютеров, существует множество профессиональных программ для оптического моделирования. Оптимальные результаты вы можете получить всего за несколько минут, при этом в систему будет включено лишь необходимое число оптических элементов, но достаточное для корректировки всех оптических искажений.
Вот почему объективы с определенным фокусным расстоянием (одинаковым углом зрения) имеют столь разные цены, размеры и качество изображения.
Качество объектива зависит от многих факторов и не стоит считать его гарантированным. Особенно важно это для вариообъективов, ведь при их проектировании так много переменных. Вариообъективы широко используются в наиболее крупных системах видеонаблюдения, так что при их выборе нужно быть очень внимательным.
Простых правил на этот счет не существует, и лучшее, что можно предложить — провести тестирование и сравнение.
Рис. 3.8. Типичная маркировка объектива для видеонаблюдения
Факторы, определяющие качество объективов, можно свести к ряду моментов:
1. Конструкция объектива:
• число элементов;
• взаимное расположение;
• коррекция аберрации на этапе проектирования.
2. Производство оптических элементов:
• тип стекла;
• технология и тип стеклопроизводства (нагревание, охлаждение, беспримесность);
• точность шлифовки и полировки (это очень важно);
• просветляющее покрытие стекла (микронное покрытие, минимизирующее потери, вызванные отражением).
3. Механическая конструкция объектива:
• фиксация положения объектива и стабильность (к ударам, температуре…);
• механические движущиеся части объектива (особенно, трансфокатор, фокусировка, лепестки диафрагмы);
• внутреннее отражение света (черное поглощающее покрытие);
• шестерни для объективов с сервоприводом (пластмасса, металл, точность).
4. Электроника (у автодиафрагм и объективов с сервоприводом):
• качество электроники автоматической диафрагмы (усиление, стабильность, точность);
• энергопотребление (для автоматической диафрагмы, как правило, низкое, но некоторые старые модели могут требовать больше, чем может дать телекамера, поскольку телекамера питает объектив с автодиафрагмой);
• схема трансфокатора и фокусировки (напряжение: 6 В, 9 В или 12 В, трех или четырехпроводный кабель управления).
Рис. 3.9. Механика вариообъектива
Рис. 3.10. Вариообъектив в разобранном виде
Изображения могут быть построены при помощи простых правил оптики и геометрии.
Как можно увидеть из рис. 3.11, для построения изображения объекта требуется, как минимум, два луча.
Рис. 3.11. Проекции изображений объектов, находящихся на различных расстояниях
При построении изображений следует придерживаться следующих трех правил:
• Объекты, находящиеся на различных расстояниях, на схеме должны одним концом касаться оптической оси.
• По определению, лучи, проходящие через центр линзы, не меняют своего направления, т. е. в центре линза ведет себя как плоскопараллельная стеклянная пластина, не вызывая преломления.
• По определению, лучи, параллельные оптической оси, проходят через фокус.
Вспомним теперь основную формулу линзы, которую мы используем при расчете количества света, падающего на ПЗС-матрицу:
1/D + 1/d = 1/f (30)
здесь D — расстояние от объекта до линзы, d — расстояние от линзы до изображения f — фокусное расстояние линзы.
Отметим, что d здесь относится к изображению не бесконечно удаленного объекта, и поэтому оно больше, чем 1; а в случае бесконечно удаленного объекта d будет равно 1.
Обратите, пожалуйста, внимание на изображения объектов, находящихся на различном расстоянии. Фокусировка линзы достигается за счет изменения расстояния между линзой и плоскостью изображения (где расположена ПЗС-матрица). Итак, проекция изображения совпадает с фокальной плоскостью только в том случае, когда линза сфокусирована на бесконечно удаленный объект. Во всех остальных случаях расстояние между линзой и изображением больше, чем фокусное расстояние линзы.
Следует также отметить, что (как упоминалось выше) на практике объектив состоит из нескольких оптических элементов. Следовательно, их можно представить эквивалентной одноэлементной линзой, расположенной в главной точке. Рис. 3.13 поясняет этот момент.
Объектив, образованный из нескольких оптических элементов (единичных тонких линз), имеет две главных точки — первую и вторую главные точки. Для тонкой линзы эти точки совпадают и расположены в центре линзы.
Плоскости, пересекающие эти главные точки и перпендикулярные оптической оси, называются главными плоскостями.
Рис. 3.12. Концепция фокусировки
Рис. 3.13. Основные точки и плоскости
Главные плоскости обладают следующими свойствами:
• Луч, падающий на первую главную плоскость (параллельно оптической оси), покинет вторую главную плоскость на той же высоте, распространяясь в направлении точки фокуса.
• Луч, падающий в направлении первой главной точки, покинет вторую главную точку под тем же углом.
• Фокусное расстояние такой линзы принимается равным расстоянию от второй главной плоскости до фокуса.
Пользуясь этими свойствами, можно построить геометрическое изображение таким же образом, как в случае линзы, состоящей из одного оптического элемента.
Следует отметить, что вторая главная точка может попасть за объективов с маленьким фокусным расстоянием. Чем меньше пределы системы линз — в случае фокусное расстояние, тем больше оптических элементов необходимо добавлять для коррекции различных искажений, что увеличивает стоимость объектива. С уменьшением формата ПЗС-матриц (от 2/3" до 1/2" и 1/3", a теперь и до 1/4". В настоящее время выпускаются телекамеры с ПЗС-матрицами 1/6". Прим. ред.) приходится производить объективы с более коротким фокусным расстоянием, чтобы сохранить тот же по ширине угол зрения.
Это, в свою очередь, вынудило промышленность уменьшить расстояние от фланца объектива до плоскости изображения, которое для «С» типа крепления равно 17.5 мм с тем, чтобы оптика стала проще, меньше, дешевле.
Новый формат расстояния равен 12.5 мм, и поскольку он меньше, он называется стандартом CS (S-small).
Рис. 3.14. Поперечное сечение объектива с ручной установкой диафрагмы