-->

Авиация и космонавтика 2007 02

На нашем литературном портале можно бесплатно читать книгу Авиация и космонавтика 2007 02, Журнал Авиация и космонавтика-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Авиация и космонавтика 2007 02
Название: Авиация и космонавтика 2007 02
Дата добавления: 16 январь 2020
Количество просмотров: 178
Читать онлайн

Авиация и космонавтика 2007 02 читать книгу онлайн

Авиация и космонавтика 2007 02 - читать бесплатно онлайн , автор Журнал Авиация и космонавтика

Авиационно-исторический журнал, техническое обозрение.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 30 ВПЕРЕД
Перейти на страницу:

Заместитель главного конструктора НПО «Молния» по летным испытаниям С.А.Микоян (до апреля 1978 г. занимавший должность заместителя начальника ГНИКИ ВВС и отвечавший в Институте за работы по теме «Спираль») по поручению Лозино-Лозинского ездил в г. Горький на предприятие, изготавливавшее шасси для всех самолетов в СССР, и долго уговаривал генерального директора Лузянина отремонтировать шасси. Тот пообещал, но так как финансирования ЭПОСа уже не было – ничего не сделал… Таким образом, взлететь ЭПОСу было уже не суждено. Аналог «105.11» можно увидеть и сегодня – после прекращения полетов он был передан в качестве экспоната в музей ВВС в подмосковном Монино.

Авиация и космонавтика 2007 02 - pic_56.jpg

Самолет-носитель Ту-95КМ планировалось переоборудовать в носитель экспериментального гиперзвукового самолета «139» ОКБ А.Н.Туполева, а также в носитель экспериментального летательного аппарата для испытаний гиперзвуковых ПВРД, но эти программы так и не получили своего дальнейшего развития.

В соответствии с первоначальной программой НИОКР кроме дозвукового аналога «105.11» был также построен аналог ОС для испытаний на сверхзвуковой скорости «105.12». Он был оборудован уже поворотными консолями крыла, способными изменять поперечный угол установки консолей V в диапазоне от +45 градусов до -5 (95 градусов вниз от вертикали) Не исключено, что именно этот максимальный угол раскладки консолей крыла на дозвуковом режиме полета мог быть в конечном итоге принят и для боевых вариантов орбитального самолета.

В качестве ракетного ускорителя использовалась первая ступень зенитной ракеты С-25, закрепленная в хвостовой части аналога между фюзеляжем и теплозащитным экраном.

Разработанный профиль сверхзвукового полета выглядел следующим образом. Сброс с самолета-носителя происходит на высоте 11000 м при скорости М=0,8. Снижаясь в планирующем полете, пилот отклоняет управляющие поверхности на 12 градусов для создания кабрирующего момента и на высоте 10300 м при скорости М=0,65 включает ракетный двигатель.

Сброс отработавшего ускорителя происходит на высоте 15500 м при достижении скорости М=1,69. В этот момент траектория должна иметь наибольший угол возвышения к горизонту, равный 26 градусов. Дальше аппарат летит по инерции с потерей скорости по траектории, близкой к параболе, поднимаясь в наивысшей точке до 1 6500 метров. Имея оклозвуковую скорость (М=1), аппарат в этот момент находится практически над ВПП. Затем начинается участок равновесного планирования, в конце которого летчик, выполняя правый разворот на высоте 11000 м (при М=0,7), должен на высоте около 6000 м при достижении скорости 420 км/час запустить турбореактивный двигатель РД36-35К. В случае отказа двигателя летчик совершает правый разворот на 90 градусов и выходит в створ ВПП, после чего совершает планирующую посадку. При нормальном запуске двигателя летчик отворачивает на 90 градусов влево и совершает обычную посадку после выполнения штатной «коробочки». Несмотря на полную готовность сверхзвукового аналога, испытания с его участием так и не проводились. У гиперзвукового аналога «105.13» был изготовлен только фюзеляж, который принимал участие в испытаниях ТЗЭ в термобарокамере.

В изготовлении все аналоги ЭПОСа были максимально унифицированы – основные конструкторские решения по всем комплектациям аналогов ОС были выполнены в единой сквозной схеме, благодаря которой трудоемкость в производстве при переходе от дозвукового варианта к гиперзвуковому возрастала очень незначительно, да и то потому, что по мере усложнения решаемых задач на борт должно было устанавливаться дополнительное и более совершенное оборудование. Это также позволяло сократить время на подготовку производства самих орбитальных самолетов.

Теплопрочностные испытания гиперзвукового аналога «105.13» проводились на специальном стенде КТПИ в ЦАГИ. Они показали, что при спуске в атмосфере при угле атаки 53 градусов при гиперзвуковом качестве 0,8 основная тепловая нагрузка воспринималась ТЗЭ, который нагревался до + 1500°С. Остальные элементы конструкции, находясь в аэродинамической тени от ТЗЭ, нагревались значительно меньше.

Эксперименты показали, что в случае уменьшения угла атаки до 30 градусов гиперзвуковое аэродинамическое качество возрастало до 1,5, существенно увеличивая возможную величину бокового маневра до 1500- 1800 км. Но в этом случае нагрев ТЗЭ увеличивался до +1700 градусов С – рубежа, допустимого для имевшихся в разработке сплавов. В процессе наземной экспериментально-стендовой отработки теплозащиты были достигнуты рабочие температуры до +1300 градусов С, однако несмотря на то, что полный цикл испытаний не был завершен, расчетный ресурс теплозащиты оценивался в более чем 50 полетов.

Тем не менее, как позднее вспоминал Г.Е.Лозино-Лозинский:

«…для металлической теплозащиты так и не удалось решить проблему остаточного коробления металла при циклических температурных нагрузках. Становилось очевидно, что теплозащита из жаропрочных сплавов сложна и громоздка в эксплуатации, и решить с ней задачу чрезвычайно тяжело. Нужно искать другие материалы. Керамическая защита, о которой мы получили сведения по «шаттлу», мне показалась намного убедительней. Хотя, приступая к ее созданию, мы были абсолютно «голые короли». Начиная с того, что даже кварцевого песка, из которого можно было сделать тонкие кварцевые нити, у нас в стране не было. Было только задание Министерству геодезии постараться найти месторождение, а пока планировали получать из Бразилии (кварцевая теплозащита американского «шаттла» тоже была изготовлена из бразильского кварцевого песка)».

Песок в стране Советов нашелся, и после отработки технологии изготовления кварцевых плиток и их лабораторных испытаний было решено испытать новую теплозащиту в условиях реального космического полета. Нужно подчеркнуть, что время ЭПОСА к этому времени уже прошло, и разработчики кварцевого плиточного ТЗП работали уже целиком на «Буран». Вот как Лозино-Лозинский описывает стадию перерастания проекта «Спираль» в полеты «БОРов»:

«…Для обеспечения уверенности в аэродинамических расчетах, и особенно в качестве созданной кварцевой плиточной теплозащиты, было принято решение на каком-то изделии типа модели космического аппарата смонтировать теплозащиту и на траектории спуска, схожей с траекторией спуска «Бурана», проверить ее надежность. Так как была достаточно хорошо и рас- четно, и на продувках экспериментально отработана и выведена та уверенная по аэродинамическому качеству и по управляемости конфигурация орбитального самолета «Спираль», то было решено в масштабе 1:2 сделать модель, которую назвали «БОР-4», которая обеспечивала и возможность выполнения траектории, близкой к траектории спуска «Бурана», и достаточно разместить количество плиток теплозащиты, имея ввиду, что температурные режимы и внешние нагрузки на эти плитки будут очень близки к тем, которые должны иметь место в процессе натурного полета «Бурана».

Авиация и космонавтика 2007 02 - pic_57.jpg

«БОР-4С» на выставке МАКС-2005

Таких изделий было сделано четыре, они полностью подтвердили надежность перерасчета результатов продувок в трубах на натуру и подтвердили качество изготовленных плиток теплозащиты, что и было в последующем доказано результатами полета «Бурана».

Следует отметить, что метод использования этой конфигурации орбитального самолета был начат Летно-ис- следовательским институтом в конце 1 960-х годов на более маленьких моделях, на которых проверялась непосредственно правильность расчетов и результатов продувок орбитального самолета типа «Спираль». Тогда эти более маленькие по своим размерам модели орбитального самолета, запускаемые с помощью одноразовых носителей, назывались «БОР-1», «БОР-2» и «БОР-3», и они успешно прошли необходимый объем летных испытаний, подтвердив наше умение, пользуясь результатом продувок, делать перерасчет на натуру».

1 ... 12 13 14 15 16 17 18 19 20 ... 30 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название