-->

Психология развития: методы исследования

На нашем литературном портале можно бесплатно читать книгу Психология развития: методы исследования, Миллер Скотт-- . Жанр: Психология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Психология развития: методы исследования
Название: Психология развития: методы исследования
Дата добавления: 16 январь 2020
Количество просмотров: 213
Читать онлайн

Психология развития: методы исследования читать книгу онлайн

Психология развития: методы исследования - читать бесплатно онлайн , автор Миллер Скотт

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 59 60 61 62 63 64 65 66 67 ... 154 ВПЕРЕД
Перейти на страницу:

разница.

Сейтц (Seitz, 1984) приводит пример. Стандартное отклонение в большинстве тестов IQ равно 15. Средняя разница между группами, равная 12, (каковой она, к примеру, указывается в исследовательских отчетах для только что поступивших в колледж и докторов философии) означала бы величину эффекта 0,8, если бы средняя разница составляла 7 пунктов, величина эффекта была бы равной 0,2. Для интерпретации этих величин можно графически изобразить распределение показателей двух популяций и область их пересечения. На рис. 7.5 изображены кривые, соответствующие трем описанным выше ситуациям, Заметьте, что с возрастанием величины эффекта сокращается область совпадения. Как отмечает Сейтц средняя пара кривых особенно информативна. Средняя разница 7 пунктов — или, если рассматривать ситуацию в общем виде, разница, составляющая половину стандартного отклонения, — может показаться не слишком большой. Однако эта разница означает, что 70% одной популяции имеет показатели выше среднего другой популяции.

Меры величины эффекта дают полезную информацию, которую нельзя извлечь непосредственно из значений логических критериев. Однако до сих пор в исследовательских отчетах в области психологии развития — а в действительности и в психологии в целом — редко можно встретить указания на величину эффекта (Cohen, 1994). При обзоре любого журнала по психологии развития можно обнаружить не один десяток F и t, но лишь несколько скромных попыток рассчитать формальные показатели величины разнообразных эффектов.

Мультивариантный дисперсионный анализ

Разница между одновариантными и мультивариантными статистическими процедурами довольно расплывчата; разные специалисты определяют ее по-разному. Однако наиболее распространенным критерием служит количество зависимых переменных. Если анализ проводится при наличии одной зависимой переменной, его можно назвать одновариаптным. Процедура использования r-критерия и дисперсионный анализ — одновариантные статистические процедуры. Если в анализе задействуется более одной зависимой переменной, его можно назвать мульти-вариантным. Существует ряд мультивариантных статистических процедур, к которым относится и мультивариантный дисперсионный анализ, или МДА.

Использование мультивариантных статистических процедур — явление, получившее широкое распространение в психологических исследован иях совсем недавно. Как отмечает Сейтц (Seitz, 1980), статистические основы для этих процедур были выработаны уже давно; проблемы начинались при их практическом использовании. Расчеты мультивариантных статистических показателей зачастую чрезмерно сложны и громоздки, и поэтому до появления компьютеров и соответствующих компьютерных программ использование мультивариантных статистических процедур было крайне затруднено. Наличие компьютера и навыки работы на нем могут оказаться весьма ценными для проведения любой формы статистического анализа.

Психология развития: методы исследования - img_22.jpeg

Рис. 7.5. Разница между популяциями, соответствующая разным значениям величины эффе

Расчеты — не единственная сложность, связанная с мультивариантными статистическими процедурами. В определенном смысле, расчеты — самое простое, поскольку эту работу выполняет компьютер. Настоящая проблема — определить, когда необходим мультивариантный анализ и как интерпретировать его результаты. Для ответа на эти вопросы написано множество книг и прочитано множество теоретических курсов, в том числе весьма подробных и содержательных (см., например: Hair, Anderson, Tatham & Black, 1992; Morrison, 1990; Nesselroade & Cattell, 1988). Здесь я затрону лишь несколько моментов, о которых ведется речь в более сжатой работе (Applebaum & McCall, 1983), ориентированной на специалистов в области психологии развития.

Предположим, проведено исследование с двумя или более зависимыми переменными. Как узнать, нужно ли проводить отдельный ДА для каждой из переменных (этот вариант всегда необходимо учитывать) или объединить их все в МДА? Эпплбаум и Маккол говорят о двух основных преимуществах МДА перед ДА. Одно из них сходно с преимуществом F-крнтерия перед отдельными f-критерия-ми. Чем больше проверок с помощью дисперсионного анализа мы проводим, тем выше вероятность, что некоторые эффекты достигнут уровня статистической зна-

чимости чисто случайно. При проведении МДА уровень вероятности при любых сравнениях, напротив, сохраняется постоянным. Второе преимущество имеет отношение к возможности при проведении МДА использовать информацию о связи между зависимыми переменными, информацию, которая не учитывается при ДА, когда анализ каждой переменной производится отдельно. Одновременный учет всех переменных, среди прочего, означает, что при помощи МДА иногда можно выявить значимые эффекты, которые упускает ДА.

Как следует из вышесказанного, МДА уместно использовать только тогда, когда есть основания предположить, что между зависимыми переменными существует некая интересная связь. Как пишут Эпплбаум и Маккол (Applebaum & McCall, 1983): «Вы не включаете в МДА все имеющиеся переменные, лишь бы увидеть, что из этого получится. Зависимые переменные нужно осмысленно подбирать. Они должны образовывать логическую совокупность, которую можно интерпретировать именно как совокупность* (р. 435). Затем Эпплбаум и Маккол приводят в качестве примера исследование габитуации у младенцев, в котором зависимые переменные представляют собой следующее: длительность фиксации в первой пробе, пробу с наиболее длительной фиксацией, количество проб от самой длительной к самой непродолжительной фиксации и средняя длительность фиксации в одной пробе. Эти переменные образуют совокупность связанных между собой (но не дублирующих друг друга) показателей габитуации у младенца, для анализа которой больше подходит МДА, а не ДА. В целом, для использования МДА больше всего подходит ситуация, когда исследование включает ряд несколько различающихся между собой характеристик одного и того же конструкта (как в примере с габитуацией).

Как бы ни было кратко это изложение метода МДА, из него можно вынести главную мысль. Наличие мощной статистической процедуры — и компьютерной технологии для ее осуществления — не означает, что эту процедуру можно бездумно использовать для любого типа данных. Сутью грамотной статистической работы является знание того, какой статистический прием применим к разного рода данным и планирование исследования с целью достижения оптимального соответствия статистических процедур и данных.

Множественный регрессионный анализ

Как и МДА, множественный регрессионный анализ — сложная статистическая процедура — сложная как для проведения, так и для описания. Как и в случае с МДА, на двух-трех страницах излагать суть процедуры множественного регрессионного анализа бессмысленно. Однако регрессионный анализ стал использоваться столь широко, что краткое рассмотрение его принципов представляется оправданным.

Говоря словами Керлингер (Kerlinger, 1986), множественный регрессионный анализ — «это метод изучения результатов влияния и силы влияния более чем одной независимой переменной на одну зависимую переменную с использованием принципов корреляционного и регрессионного анализа» (р. 527). Если выразиться несколько иначе, множественный регрессионный анализ дает нам информацию о том, как связаны две или более независимые переменные, или «предикторы», с одной зависимой переменной, или «критерием». Мы, к примеру, можем провести исследование, в котором будем изучать успешность выполнения, в лабораторных условиях некоего задания как функцию от IQ, социально-экономического статуса, характера инструкций к заданию и времени, отведенного на его выполнение. Применение множественного регрессионного анализа к нашим данным позволит оценить вклад каждого из этих четырех предикторов (как но отдельности, так и в сочетании) в дисперсию критериальной переменной.

1 ... 59 60 61 62 63 64 65 66 67 ... 154 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название