Психология развития: методы исследования

На нашем литературном портале можно бесплатно читать книгу Психология развития: методы исследования, Миллер Скотт-- . Жанр: Психология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Психология развития: методы исследования
Название: Психология развития: методы исследования
Дата добавления: 16 январь 2020
Количество просмотров: 226
Читать онлайн

Психология развития: методы исследования читать книгу онлайн

Психология развития: методы исследования - читать бесплатно онлайн , автор Миллер Скотт

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 55 56 57 58 59 60 61 62 63 ... 154 ВПЕРЕД
Перейти на страницу:

По какому принципу осуществляется выбор между параметрическими и непараметрическими характеристиками? Как только что отмечалось, в ряде случаев выбора просто нет, поскольку единственный вариант — это непараметрический

Формулу, представленную на, рисунке, называют «определительной формулой* хи-квадрат. Есть также «калькуляционная формула»: равноценная в математическом смысле, но более удобная для проведения расчетов. Формулы многих статистических показателей также разделяются на определительные и калькуляционные.

критерий. В других случаях необходимо принять решение, и здесь приобретает значение несколько понятий. Рассмотрим два из них: мощность и устойчивость.

Термин мощность означает вероятность того, что определенный логический критерий исключит нуль-гипотезу тогда, когда ее действительно нужно исключить. Чем мощнее критерий, тем лучше он выявляет истинные различия и поэтому позволяет безошибочно отвергнуть нуль-гипотезу. Это понятие, вероятно, кажется знакомым, поскольку мощность — это еще один способ охарактеризовать ошибку второго рода. Чем мощнее критерий, тем меньше вероятность ошибки второго рода.

В некоторых случаях параметрические критерии мощнее аналогичных непараметрических критериев. По сути, это объясняется тем, что при расчете параметрического критерия используется больше информации о данных. Многие непараметрические критерии, например, ограничены порядковыми характеристиками данных, в частности, рангом показателей в сравниваемых выборках. При расчете f-критерия, напротив, задействуются фактические показатели и абсолютная разница между ними; поэтому иногда с его помощью выявляются различия, которые не смогли выявить непараметрические критерии. Следует добавить, что разница в мощности, как правило, невелика и обнаруживается преимущественно при изучений больших выборок. Кроме того, она не является чем-то неизбежным. Во многих ситуациях параметрические и непараметрические критерии обладают одинаковой мощностью. Если предположения, лежащие в основе параметрического критерия, серьезно нарушаются, непараметрические аналоги могут оказаться более мощными (см. Blair & Higgins, 1980).

Сказанное о параметрических предположениях подводит нас к понятию устойчивости. Устойчивость характеризует безопасность отклонений от допущений, лежащих в основе некоего критерия. Устойчивый критерий сравнительно нечувствителен к таким нарушениям, то есть, как правило, он позволяет сделать точные выводы о значимости даже тогда, когда допущения не соответствуют действительности. И t и f-критерии достаточно устойчивы. Именно поэтому в литературе можно часто встретить указание на их использование даже для данных, не отвечающих рассмотренным выше требованиям — данным рейтинговых шкал, к примеру, или данных, распределение которых заметно отличается от нормального, или при наличии неравной дисперсии у сравниваемых групп. Устойчивость не означает, что исследователь может, не задумываясь, применять параметрические критерии к любому типу данных; однако не следует и слишком поспешно отказываться от параметрических критериев лишь потому, что некое допущение, лежащее в их основе, нарушается. Возможно, стоит посоветоваться со специалистом: применим ли выбранный параметрический показатель к имеющимся данным?

План исследования

Мы рассмотрели две детерминанты выбора статистического показателя: уровень измерения и распределение данных. Третий фактор, который следует учитывать, — это план исследования.

Имеют значение разные аспекты плана. Один из аспектов — количество уровней независимой переменной. В нашем примере с агрессией детей дошкольного возраста этот фактор довольно прост: две возрастные группы и два пола. Поэтому здесь достаточно легко при сравнении двух уровней каждой переменной можно

применить f-критерий. Предположим, однако, что мы усложняем ситуацию, добавляя дополнительные уровни. Поскольку с полом представить это себе довольно трудно, включим новые возрастные группы. Допустим, вместо двух у нас их шесть. Что происходит тогда с нашим /-критерием?

Наиболее очевидным следствием является то, что возникает необходимость подсчитать значительно большее количество критериев. При наличии шести возрастных групп возможно 15 парных сравнений. Поэтому, чтобы что-то обнаружить, придется подсчитать значение 15 t-критериев. Рассчитывать 15 показателей и указать их все в отчете, естественно, довольно неудобно. Однако более серьезный довод против этого имеет отношение к уровню вероятности. Нам нужно, чтобы этот уровень оставался неизменным, какой бы рубеж для значимости мы ни выбрали — к примеру, традиционные 0,05. Однако наличие множества Сделает интерпретацию уровня вероятности весьма затруднительной. Получив 15 значений, каждое из которых находится на уровне 0,05, мы получаем вероятность того, что значимость по крайней мере одного из этих показателей носит случайный характер, равную 0,54.' Как же тогда интерпретировать любой статистически значимый результат?

Проблема, в действительности, даже еще сложнее. Вероятность 0,54 основывается на предположении, что все 15 показателей независимы друг от друга. Однако, как правило, это не так; они взаимосвязаны в том смысле, что одни и те же данные используются для разных сравнений. Это, фактически, относится к описанному выше случаю сравнения между возрастными группами: каждая из шести возрастных групп вносит свои данные — одни и те же — в расчеты 5 из 15 критериев. При наличии такого рода взаимозависимости критериев определить точный уровень вероятности для каждого критерия невозможно. Исследователь может подсчитать значение какого-то t и выявить значимость на уровне 0,05; однако вполне может оказаться, что истинный уровень значимости совершенно иной.

Есть и еще одна проблема, связанная с множественностью t. Допустим, что мы усложнили наше исследование не добавлением уровнейяезависимой переменной, а введением дополнительных независимых переменных. Помимо возраста и пола как детерминант агрессии мы могли бы изучать эффект обстановки игровой комнаты, разницу между поведением в группе и на улице, влияние показа половине детей агрессивного мультика и т. д. Ясно, что чем больше независимых переменных, тем большее количество t нужно подсчитать. Но проблема состоит не только в избытке показателей L При изучении множественных переменных всегда существует вероятность зависимости эффекта одной переменной от уровня другой. Иными словами, возможно взаимодействие переменных. Эффекты взаимодействия необходимо выявить, но это довольно трудно сделать, используя только г-критерий.

Чаще всего в качестве альтернативы использования t-критерия проводят дисперсионный анализ (ДА). По существу, ДА расширяет возможности г-критерия на те случаи, когда имеется более двух средних. Метод расчета здесь иной и более

Возможно, проще всего увидеть то, откуда появляется такая вероятность, это задаться вопросом, ка-коны шансы не получить случпнный результат. При применении олной статистической проверки вероятность избежать такой ошибки составляет 0,95. При проведении диух отдельных проверок вероятность избежать ошибки определяется значением двух значений вероятности, то есть 0,952. При проведении 15 проверок эта вероятность составит 0,9515 или 0T4G. Поэтому кероятность того, что мы получим хотя бы один случайный значимый результат, равна 1 - 0,46.

сложный, чем метод расчета t, и в этой книге мы даже не будем пытаться его описать. Однако логика, лежащая в основе обоих приемов, одинакова: мы проверяем значимость, определяя, насколько первичная дисперсия, связанная со сравниваемыми группами, превышает вторичную дисперсию или дисперсию ошибки. Статистический показатель, являющийся результатом этой проверки, обозначается буквой F, и значимость его, как и значимость t, устанавливается по стандартным таблицам, которые можно найти в любом учебнике по статистике.

1 ... 55 56 57 58 59 60 61 62 63 ... 154 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название