-->

Возвращение из космоса

На нашем литературном портале можно бесплатно читать книгу Возвращение из космоса, Парфенов В. А.-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Возвращение из космоса
Название: Возвращение из космоса
Дата добавления: 16 январь 2020
Количество просмотров: 274
Читать онлайн

Возвращение из космоса читать книгу онлайн

Возвращение из космоса - читать бесплатно онлайн , автор Парфенов В. А.

12 апреля 1961 года произошло величайшее событие в истории нашей планеты — советский космический корабль «Восток» с человеком на борту совершил триумфальный полет вокруг земного шара и вернулся на священную землю нашей Родины. Первым в мире облетел вокруг Земли на космическом корабле, в 30 раз более быстроходном, чем «Ту-104», советский летчик майор Юрий Алексеевич Гагарин. Пройдут века, но никогда не померкнет сияющая слава этого весеннего дня. Люди будущего позавидуют нам, свидетелям беспримерной победы человеческого разума.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Сильная окисляемость молибдена при высоких температурах является самым серьезным препятствием для использования этого металла при постройке носовых конусов ракет, возвращаемых в атмосферу Земли. Поэтому на Западе усиленно разрабатываются способы защиты поверхности молибденовых деталей от окисления.

Молибден без защитных покрытий используют для изготовления сопел ракетных двигателей и других деталей, рассчитанных на короткий срок службы при температурах около 220 °C.

Большое внимание специалисты уделяют вольфраму. Из всех известных металлов он обладает самой высокой температурой плавления-341 °C. Чтобы вольфрам расплавился, нужна температура, лишь в два раза меньшая, чем температура поверхности Солнца.

Из этого металла долгое время вытягивали лишь нити для ламп накаливания, и только сравнительно недавно были разработаны приемлемые способы прокатки и литья деталей из вольфрама [24]. Огромная прочность этого металла сильно затрудняет обработку вольфрамовых деталей.

Вольфрам имеет большой удельный вес. Он в 7 раз тяжелее алюминия и в II раз тяжелее бериллия. Если обшивку корабля сделать из вольфрама, то стартовый вес космического корабля значительно возрастет.

Конечно, список материалов космической техники не ограничивается только пятью тугоплавкими элементами. Для будущих спутников и межпланетных кораблей потребуются сплавы, защищающие человека от космического облучения. Для ажурных и в то же время прочных конструкций космических аппаратов потребуются сплавы, в несколько раз более прочные, чем существующие ныне. Новые научные открытия в физике твердого тела, в металлургии и технологии металлов приводят к созданию новых материалов космической техники. Это будут, очевидно, очень теплоемкие материалы с весьма низкой теплопроводностью, самовозгоняющиеся «жертвенные» пластмассы и т. п.

Сверхогнеупорные материалы

Все тугоплавкие металлы имеют существенный недостаток: при высоких температурах они начинают быстро разрушаться в результате окисления. При этом образуется порошкообразное вещество, напоминающее скорее соль, чем металл. Это окислы.

Но окислы многих металлов чрезвычайно огнестойки. Они больше уже не окисляются при нагреве и плавятся при весьма высоких температурах. Так, например, алюминий плавится при температуре 668 °C, а окись алюминия — при 205 °C; окись бериллия становится жидкой при 250 °C, в то время как металл бериллий — при 1315 °C. Металл цирконий расплавляется при температуре 185 °C, а его окись-при 295 °C.

Еще более тугоплавки соединения металлов с углеродом, называемые карбидами. Карбид ниобия плавится при температуре 350 °C, циркония-при 355 °C, а тантала-при 415 °C.

Материалы космической техники, кроме тугоплавкости, должны обладать рядом других качеств, прежде всего пластичностью. Именно благодаря пластичности изделие не разрушается при тепловом ударе, т, е. при сверхбыстром нагреве в момент входа летательного аппарата в атмосферу Земли.

Однако пластичность окислов и карбидов металлов очень низкая. Эти хрупкие материалы, содержащие в основном окислы металлов и другие химические соединения, называются керамическими материалами, или просто керамикой.

Все керамические материалы-плохие проводники тепла. Используя эту особенность керамики, специалисты ряда стран уже теперь применяют ее для защиты важных узлов ракеты от перегрева. Слоем сверхогнеупорной керамики, как защитной рубашкой, не пропускающей тепло, покрываются сопла реактивных двигателей [26]. Теплоизолирующие покрытия будут защищать основную металлическую конструкцию от интенсивного окисления, сохранять ее прочность.

Как же наносится слой керамики на металл? Для этого используется метод горячего напыления. Из своеобразного пульверизатора вылетают мельчайшие расплавленные в сварочной дуге частички керамики. Ударяясь о металл, они остывают и прилипают к детали. Методом горячего напыления наносятся на изделия из металла окись алюминия (так называемое покрытие «РокидА») и двуокись циркония («Рокид2»). Толщина покрытия колеблется в пределах от десятых долей миллиметра до нескольких миллиметров. Каждый миллиметр покрытия из окиси алюминия снижает температуру защищаемого металла на 13 °C, а из окиси циркония — на 175 °C.

Напыленный защитный слой обычно имеет много мельчайших пор. Эти поры придают покрытию гибкость, необходимую для того, чтобы выдержать изгибы.

Металлические детали, покрытые окисью алюминия, работают при температуре до 165 °C. Окись циркония защищает металл до 230 °C. Оба эти покрытия стойко переносят тепловой удар и не боятся изгибов. Чем толще напыленный слой керамики, тем он менее прочен. Чтобы увеличить толщину покрытия и в то же время сохранить его прочность, керамикой покрывают вначале металлическую сетку, которой придана форма покрываемой поверхности. Затем эта сетка, покрытая керамикой, припаивается или приваривается к защищаемой поверхности. Такое покрытие называется армированным. Тонкие металлические нити сетки, подобно стальным стержням в железобетоне, придают керамике высокую прочность.

Армированные керамические покрытия способны выдерживать температуру до 220 °C и создавать температурный перепад 22 °C на каждый миллиметр толщины покрытия.

Возвращение из космоса - i_011.png
Рис. 11. Так керамические покрытия изолируют от тепла силовые элементы корабля

На рис. 11 показано, насколько эффективны теплоизоляционные покрытия, нанесенные на лист жаропрочного никель-хромового сплава толщиной 1,27 мм. Листы без керамической защиты и покрытые слоем керамики нагревались в течение 30 секунд пламенем кислородноацетиленовой горелки. При этом температура листа измерялась. Оказалось, что покрытия «Рокид А» и «Рокид 2» толщиной 0,89 мм уменьшают температуру металлического листа после 15-секундного нагрева примерно на 30 °C, армированное покрытие толщиной 3,45 мм — почти на 90 °C.

Тяжелые тепловые условия входа межпланетного корабля в земную атмосферу требуют новых керамических покрытий и новой технологии нанесения их на металлические поверхности [27]. Если на земле керамические покрытия работают в течение сотен и тысяч часов, то при космических полетах и особенно при возвращении из космоса от покрытий потребуется сохранение стойкости всего в течение нескольких минут, но зато при чрезвычайно высоких температурах.

Как получить в земных условиях сверхвысокие температуры, необходимые для опытной проверки деталей и узлов космической техники? На этот вопрос отвечает следующий раздел брошюры.

ВОЗВРАЩЕНИЕ ИЗ КОСМОСА… НА ЗЕМЛЕ

У человека в синем халате необычные темные очки. В руке «пистолет» с коротким толстым стволом. От него — провода к маленькому железному шкафу. Человек нажимает «курок», и из ствола вырывается ослепительно яркий огненный нож. На этот бело-голубой язычок нельзя взглянуть без очков даже за десятки метров. Кто-то образно сказал: сварщик взял в руки кусочек солнца.

«Пистолет» в руках человека — это плазменная горелка — новый, невиданный ранее источник тепла. Струйки плазмы — «небесный огонь», он легко сжигает метеориты, превращает в пар самые тугоплавкие вещества Вселенной. Температура такой струйки достигает 20 00 °C и выше [28].

В течение многих десятилетий ученые пытались найти такой необычный источник тепла. Еще недавно они считали, что ни при каких химических реакциях нельзя достичь температур выше 470 °C. И они были правы: химическое взаимодействие атомов не позволяет получить такие температуры.

Между тем нужда в источнике тепла с более высокой температурой с каждым годом становилась острее. Необходимо было изучить на земле процессы сгорания тугоплавких веществ, чтобы можно было создать аппарат, способный выдержать сверхвысокий нагрев при возвращении из космоса.

И вот на помощь исследователям пришла плазма. Первым генератором плазменной струи, или, как говорят, плазматроном, была… обычная сварочная дуга. Попытку создать плазматрон предпринял еще в 1920 году немецкий физик Гердьен. Он, конечно, не думал тогда о проблеме возвращения из космоса, а просто стремился создать прибор, позволяющий получить высокую температуру. Но его попытка была безуспешной.

Перейти на страницу:
Комментариев (0)
название