Возвращение из космоса
Возвращение из космоса читать книгу онлайн
12 апреля 1961 года произошло величайшее событие в истории нашей планеты — советский космический корабль «Восток» с человеком на борту совершил триумфальный полет вокруг земного шара и вернулся на священную землю нашей Родины. Первым в мире облетел вокруг Земли на космическом корабле, в 30 раз более быстроходном, чем «Ту-104», советский летчик майор Юрий Алексеевич Гагарин. Пройдут века, но никогда не померкнет сияющая слава этого весеннего дня. Люди будущего позавидуют нам, свидетелям беспримерной победы человеческого разума.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Ученые [17] рассмотрели условия, при которых возможен вход в атмосферу спутника, идущего на высоте 160 км со скоростью 6,4 км/сек (рис. 9). Для упрощения расчетов они допустили, что траектория спуска перпендикулярна поверхности Земли. При этом предполагалось, что к моменту достижения земной поверхности вся энергия спутника, как кинетическая, так и потенциальная, превратится в тепло. Учитывалось и то, что одна половина тепла поглощается стенками спутника, а другая рассеивается в атмосфере.
Расчет показал, что на каждый килограмм веса спутника выделяется около 5500 килокалорий тепла. При весе спутника 450 кг общее количество выделившегося тепла составит около двух с половиной миллионов килокалорий.
Сколько потребуется возгоняющего вещества, например окиси бериллия, чтобы поглотить все это тепло? Один килограмм такого вещества поглощает при испарении 5870 килокалорий тепла. Для поглощения же 1250000 килокалорий тепла, которое приходится на спутник весом 450 кг, необходимо испарить 210 кг окиси бериллия.
Несмотря на то что температура поверхности корпуса спутника в момент испарения окиси бериллия равна 250 °C, этот разогрев не опасен для конструкции и оборудования спутника, поскольку воздействие тепла кратковременно, а теплопроводность окиси бериллия невысока. При высоких температурах возгоняются не только бериллий и его окись, но и такие металлы, как тантал, вольфрам, молибден.
Вместо окиси бериллия и других дефицитных материалов в качестве жертвенного слоя могут быть использованы пластмассы, которые имеют низкую теплопроводность, отличаются гибкостью и способны поглощать при испарении огромное количество тепла.
Материалами, возгоняющимися при высокой температуре, предполагается покрывать наружные элементы космических летательных аппаратов: носовую часть фюзеляжа, передние кромки крыльев и хвостовых оперений. На рис. 10 приведена схема профиля крыла космического корабля до возвращения в атмосферу и как она будет выглядеть после посадки на Землю. Конструктивные элементы 1, воспринимающие нагрузку крыла, будут покрыты слоем теплоизоляции 2 (асбестом или кварцем) и испаряющимся материалом 3. После обгорания носовой части фюзеляжа и крыла лобовое сопротивление летательного аппарата возрастет. А это приведет к снижению скорости и, следовательно, к уменьшению температуры конструкции [18].
Еще одним средством защиты летательного аппарата от сгорания может служить отвод тепла излучением. Считается [19], что в результате излучения может быть возвращено в атмосферу около 40 % тепла, поступившего в обшивку из пограничного слоя. Поэтому стараются увеличить отражательную способность поверхности летательного аппарата, для чего прежде всего увеличивают поверхность передних кромок фюзеляжа и крыльев, а также улучшают качество поверхности, полируя ее.
Температуру может снизить магнитное поле
Молекулы азота и кислорода состоят из пар атомов, связанных между собой и движущихся совместно. При высоких температурах, возникающих в ударных волнах или в пограничном слое обтекания, молекулы распадаются на отдельные атомы. При еще более высоких температурах начинается ионизация газа: молекулы и атомы, теряя или приобретая электроны, получают электрический заряд. Такие заряженные частицы, как известно из физики, могут быть приведены в движение под действием электромагнитных полей. Этим самым открывается возможность управлять пограничным слоем воздуха, обтекающего космические тела при входе их в атмосферу Земли. Воздух в ударных волнах, отходящих от носовой части аппарата, настолько сильно ионизирован, что он хорошо проводит электрический ток, а следовательно, на ударную волну можно воздействовать магнитными полями-отодвинуть их от носовой части аппарата и тем самым снизить температуру его поверхности.
Специалисты рассчитали [20], что если ракета входит в плотные слои атмосферы со скоростью 5,7 км/сек, то между ударной волной и носовой частью ракеты находится слой воздуха, нагретого до 665 °C. При такой температуре и соответственно высоком давлении ионизируется около двух процентов атомов газов, входящих в состав воздуха.
Если на поверхности носовой части корабля удастся создать сильное магнитное поле, то под его влиянием скорость потока воздуха замедлится. От этого носовая часть нагреется меньше. Еще лучших результатов можно добиться, если носовой конус покрыть легко ионизирующимся материалом. Ионы такого материала, смешиваясь с частицами воздуха, сделают его хорошим проводником. Эта смесь, проходя через магнитное поле, будет тормозиться еще сильней.
Итак, если вокруг носового конуса по кольцу пропустить большой ток, то образующееся магнитное поле будет замедлять движение ионов и отталкивать ионизированные газы, находящиеся за фронтом ударной волны. Действие ударной волны сгладится, и нагрев тела уменьшится.
Какому же из методов борьбы с нагревом космических летательных аппаратов, входящих в атмосферу Земли, отдают предпочтение? В последнее время в ряде стран интенсивно ведутся сравнительные исследования [21] этих методов. Самым большим весом обладают защитные устройства, поглощающие тепло. Минимальный вес имеет система защиты, основанная на методах испарительного охлаждения и возгонки поверхности тела. Этим системам, очевидно, и будет отдано предпочтение.
МАТЕРИАЛЫ КОСМИЧЕСКОЙ ТЕХНИКИ
Машина и среда
Много веков назад была построена первая машина из металла. С тех пор все разнообразнее становится мир стальных помощников человека. В процессе их совершенствования люди постоянно изыскивают все новые и новые материалы, необходимые для создания механизмов. В поисках источников сырья они взрывают недра земли, опускаются на дно морей, ежегодно перерабатывают горы земных пород.
В наши дни все химические элементы земной коры используются человеком для создания орудий машинной техники.
Наблюдая десятилетиями за работой стальных механизмов, человек сделал для себя важный вывод: металлические детали не вечны. Под влиянием нагрузок и внешней среды они приходят в негодность: изнашиваются, «устают», подвергаются поверхностному разрушению.
Чтобы продлить жизнь машин, сделать их более надежными, ученые-металловеды, металлурги, физики и химики провели тысячи разнообразных испытаний, терпеливо собирали факты. Стремясь проникнуть в тайны разрушения деталей машин под действием нагрузок и внешней среды, специалисты создали учение о прочности материалов, о защите их от распространенной болезни ржавления — коррозии.
Современная промышленность и техника приобрели огромный опыт создания надежных механизмов, способных работать в самых разнообразных условиях.
Однако в наш космический век машины, созданные человеком, работают не только в пределах земной атмосферы, но и в межпланетном пространстве-в царстве вакуума, метеоритных «дождей», в мире «ливней» сверхбыстрых ядерных частиц, в условиях больших температурных контрастов. Как поведут себя широко известные материалы в этих необычных «неземных» условиях?
Механизмы летательной машины в момент старта работают с невероятно высокими тепловыми, вибрационными и механическими нагрузками. В ракетных двигателях преобразуется огромное количество энергии. Исторгаясь из реактивных сопел, поток тепловой энергии воздействует прежде всего на детали космического корабля. И чем больше мощность двигателей, тем необычнее условия для материалов летательных аппаратов.