Возвращение из космоса
Возвращение из космоса читать книгу онлайн
12 апреля 1961 года произошло величайшее событие в истории нашей планеты — советский космический корабль «Восток» с человеком на борту совершил триумфальный полет вокруг земного шара и вернулся на священную землю нашей Родины. Первым в мире облетел вокруг Земли на космическом корабле, в 30 раз более быстроходном, чем «Ту-104», советский летчик майор Юрий Алексеевич Гагарин. Пройдут века, но никогда не померкнет сияющая слава этого весеннего дня. Люди будущего позавидуют нам, свидетелям беспримерной победы человеческого разума.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Все рассмотренные в этой главе летательные аппараты для возвращения из космоса потребуют еще большой проверки. В настоящее время в США наиболее активно разрабатываются баллистические капсулы, спутники с аэродинамическим тормозом, а также с роторным торможением. Эти устройства привлекают специалистов тем, что их можно выводить на орбиту при помощи не очень мощных ракет. Между тем Для посылки на орбиту громоздких металлических планеров и надувных аппаратов потребуются гораздо более мощные ракетные системы, какие на Западе находятся еще в стадии разработки.
Одно дело начертить на бумаге чертежи летательных приборов, пригодных для уменьшения космической скорости, другое-воплотить чертежи в металл. Перед выбором материалов конструктору прежде всего нужно знать, в каких условиях будет работать его конструкция, насколько сильно нагреется каждая ее часть. А это во многом зависит от внешней формы летательного аппарата.
Все дело в том, что перед входом летательного аппарата в плотные слои атмосферы нельзя очень резко снижать скорость от космической до той, при которой корпус будет нагреваться незначительно. При этом возникнут такие колоссальные перегрузки, что все живые существа в кабине погибнут. Вот почему приходится тормозить плавно, входить в атмосферу постепенно. А при таком торможении стенки корабля неминуемо будут нагреваться до температур свыше тысячи градусов. Значит, возникает новая очень серьезная проблема: как защитить стенки корабля от чрезмерного разогрева?
ЗАЩИТА ОТ «НЕБЕСНОГО ОГНЯ»
Какой должна быть форма носовой части?
Даже для головки безэкипажной ракеты, которая, достигнув вершины траектории, возвращается в земную атмосферу, форма передней части имеет большое значение. Ведь чем больше скорость ракеты при входе в плотные слои атмосферы, тем сильнее разогрев. И если бы конструкторы не принимали защитных мер, ракета сгорела бы, подобно метеору.
Как же защитить от сгорания летательные аппараты, которые предполагается вернуть из космоса на Землю?
При проектировании первых межконтинентальных баллистических ракет [14–16] отдавалось предпочтение остроконечным формам носовой части, имеющим наименьшее аэродинамическое сопротивление. Но испытания ракет показали, что в тонком пограничном слое воздуха, окружающем носок ракеты, возникают чрезвычайно высокие температуры. Носовая часть хорошо обтекаемой формы отражает в атмосферу только 50 процентов тепловой энергии. Остальное тепло воспринимает корпус ракеты.
Совсем иначе ведет себя ракета с тупой носовой частью. При входе в атмосферу впереди ее образуется мощная ударная волна. Она действует, подобно тормозу, и отражает в атмосферу более 90 процентов общей тепловой энергии. Только десятая часть этого тепла идет на нагрев корпуса ракеты.
Посмотрите, как обтекается тупоносая ракета потоком воздуха, имеющим скорость в 5-10 раз больше скорости звука (рис. 7). Воздух в сильно сжатой зоне перед головкой в этом случае интенсивно нагревается. Одновременно скорость потока уменьшается, становясь меньше скорости звука. Поэтому значительная часть энергии движения переходит в тепловую. Это сильно увеличивает температуру потока и ведет к разрушению молекул воздуха на атомы. Этот процесс называют диссоциацией. А что происходит в слое воздуха вблизи корпуса ракеты? Здесь многое зависит от шероховатости корпуса. Полусферическую отполированную головку поток обтекает плавно, без завихрений. Но даже на гладкой цилиндрической части корпуса он завихряется. А это ускоряет переход тепла от пограничного слоя к корпусу.
Чтобы узнать, сможет ли носовой конус выстоять при возвращении аппарата в атмосферу, надо знать общее количество тепла, которое передается корпусу из пограничного слоя, а также скорость, с ка. кой происходит эта передача. Все известные на Земле вещества имеют предел теплоемкости и скорости передачи тепла, поэтому единственный способ улучшить теплозащиту, казалось бы, заключается в утолщении стенок носовой части.
Чем более тупую форму имеет носок, тем больше времени потребуется ракете для возвращения на Землю. В этом случае ракета получит тепла больше, однако поступать оно будет с меньшей скоростью. При тупом носке количество тепла, подводимого на каждый квадратный сантиметр, уменьшается, так как тепло распределяется на большей площади.
Тупоносый летательный аппарат при входе в плотные слои воздуха очень резко снижает свою скорость, отчего возникает недопустимо высокое торможение. Если в кабину такой ракеты поместить человека, его прижмет с огромной силой к передней стенке кабины и буквально раздавит. Чтобы избежать резкого торможения, на хвостовую часть летательного аппарата можно надеть железную «юбку» (рис. 8). Эта «юбка» в верхних слоях атмосферы раскрыта полностью, а при подходе к Земле, по мере увеличения плотности воздуха, ширина «юбки» начнет постепенно уменьшаться. В результате лобовое сопротивление ракеты будет изменяться плавно, а величина торможения останется в допустимых пределах.
Итак, предотвратить сгорание космического корабля в момент, когда он пронзает атмосферу, можно подбором соответствующей формы носовой части из материала, хорошо отводящего тепло. Лучший ли это метод защиты спутника от сгорания? Сейчас мы это выясним.
«Жертвенный» слой
Оказывается, есть и другой способ предохранить космическое тело от сгорания. Поверхность спутника можно покрыть таким веществом, которою для своего плавления, а тем более для испарения требует очень много тепла. Слой такого вещества хотя и обгорит при снижении спутника, но сам корпус останется невредимым. Такой защитный слой иногда называют «жертвенным» [17].
Мысль покрывать носовую часть жертвенным слоем родилась у ученых при исследовании железных и каменных глыб, прилетевших из космоса на Землю. Такие «гости из космоса» называются метеоритами. Исследуя их, ученые обнаружили, что поверхность их обычно оплавлена, а внутреннее строение остается без изменения.
Для жертвенного слоя подходят два типа материалов: вещества, способные поглощать очень много тепла в момент перехода из твердого состояния в жидкое, а также вещества, поглощающие очень много тепла при переходе из твердого состояния прямо в газообразное. Процесс испарения твердых тел называют возгонкой или сублимацией.
Конечно, для жертвенного слоя целесообразнее брать вещества с наибольшей величиной теплопоглощения, такие как углерод, окись магния, бериллий. Эти вещества самые теплоемкие в твердом состоянии. Интересно и то, что углерод из твердого состояния переходит сразу в газообразное, не расплавляясь, то есть он возгоняется. При этом он поглощает в десятки раз больше тепла, чем, например, платина, молибден, хром — очень тугоплавкие металлы.
Носовая часть ракеты, покрытая жертвенным слоем, должна оплавляться равномерно, сохраняя нужную аэродинамическую форму. Материалы для оплавляющихся головок должны, кроме того, иметь низкую скорость передачи тепла. В этом случае корпус спутника будет оставаться еще холодным и поэтому достаточно прочным даже тогда, когда защитный слой начнет уже плавиться.
Еще более перспективным способом защиты космического аппарата от сгорания считается покрытие его носовой части возгоняющимся веществом. На превращение твердого тела сразу в газ расходуется огромное количество тепла, поступающего из пограничного слоя к обшивке. Это тепло вместе с газом отводится от корабля в пространство. Вот почему в период сверхбыстрого разогрева носовой части летательного аппарата его внутренние жизненно важные узлы будут защищены от сгорания.