-->

Разведка далеких планет

На нашем литературном портале можно бесплатно читать книгу Разведка далеких планет, Сурдин Владимир Георгиевич-- . Жанр: Прочая научная литература / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Разведка далеких планет
Название: Разведка далеких планет
Дата добавления: 15 январь 2020
Количество просмотров: 281
Читать онлайн

Разведка далеких планет читать книгу онлайн

Разведка далеких планет - читать бесплатно онлайн , автор Сурдин Владимир Георгиевич

Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 25 26 27 28 29 30 31 32 33 ... 82 ВПЕРЕД
Перейти на страницу:
Разведка далеких планет - i_073.jpg

Рис. 3.26. Зеркало 3-метрового Ликского рефлектора на шлифовальном станке. Несмотря на сотовую структуру, жесткое зеркало даже сравнительно небольшого диаметра имеет изрядную толщину.

В последние годы создаются телескопы нового поколения с апертурой 8-10 м. Если бы зеркало такого диаметра изготавливалось по старой технологии, оно весило бы сотни тонн. Поэтому используются новые технические принципы: главное зеркало делается либо составным из нескольких небольших зеркал, либо настолько тонким, что само не может поддерживать свою форму и требует специальной механической системы. Крупнейшими сейчас являются 10-метровые телескопы-близнецы «Кек-1» и «Кек-2», установленные в обсерватории Мауна-Кеа (о. Гавайи), и Большой канарский телескоп (Gran Telescopio Canarias, GTC) на о. Пальма. Их зеркала собраны из 36 шестиугольных элементов диаметром по 2 м. Компьютерная система постоянно регулирует их относительное положение для согласованной работы как единого зеркала.

Разведка далеких планет - i_074.jpg

Рис. 3.27.120-дюймовый (305 см) рефлектор «Шейн» Ликской обсерватории (1959 г.).

Немного меньшего размера четыре телескопа VLT (Very Large Telescope), имеющие монолитные зеркала диаметром 8,2 м. Они установлены на вершине горы Серро-Паранал, расположенной в самом сердце безжизненной пустыни Атакама (Чили), в 12 км от тихоокеанского побережья, где условия для астрономических наблюдений почти идеальны. Этот комплекс принадлежит Европейской южной обсерватории (ESO) и успешно работает уже 10 лет. Приступил к работе и «Большой бинокулярный телескоп» (Large Binocular Telescope, LBT) в обсерватории Маунт-Грэхем (Аризона), имеющий на одной монтировке два 8,4-метровых зеркала.

Тут я должен заметить, что дата рождения большого телескопа – понятие не вполне определенное. Гигантский телескоп – очень сложная машина. Есть несколько моментов, которые можно назвать его «рождением»: установка главного зеркала, первый свет – получение первой фотографии неба, торжественное открытие с разрезанием ленточки в присутствии гостей и начальства (бутылку шампанского о телескоп не разбивают). Один из этих моментов указывают как дату рождения телескопа. Но его окончательная доводка обычно растягивается на годы. Крупные телескопы, как крупные животные, медленно растут и долго не стареют. Они живут и работают по 100 и более лет, постепенно приобретая все большие возможности и принося все более важные результаты. Нередко случается, что телескоп теряет возможность работать не потому, что сам постарел, а потому, что изменилась окружающая среда. Об этом мы поговорим в конце главы, когда речь пойдет об астроклимате. А сейчас – небольшое отступление.

У астрономов сложилась традиция давать крупным телескопам собственные имена. До сих пор это были имена знаменитых ученых или меценатов, чьи усилия и деньги способствовали рождению уникальных научных инструментов. Например, метровые рефракторы «Лик» и «Йеркс», 100-дюймовый рефлектор «Хукер», 10-метровые телескопы «Кек» были названы в честь меценатов, а телескопы 3-5-метрового диаметра «Хейл», «Гершель», «Мейол», «Струве», «Шейн» и «Шайн» – в честь известных астрономов. Уникальному космическому телескопу дали имя знаменитого американского астронома Эдвина Хаббла. Сотрудники ESO в Чили, создающие гигантскую систему VLT из четырех 8-метровых и трех 2-метровых телескопов, решили не отступать от этой традиции и тоже дать своим гигантам имена собственные. Надо сказать, что это очень удобно, когда длинные технические обозначения заменяют простыми именами. Учитывая местные традиции, этим телескопам решили дать имена, почерпнутые из языка народа мапуче, живущего в южной части Чили. Отныне восьмиметровые телескопы называют в порядке их рождения так: «Анту» (Солнце), «Куйен» (Луна), «Мелипаль» (Южный Крест) и «Йепун» (Венера). Красиво, хотя запомнить с первого раза сложновато.

Таблица 3.3

Шесть поколений телескопов-рефлекторов

Разведка далеких планет - i_075.png

Нужно сказать, что и сами астрономы поначалу запутались в этих именах. Назвав четвертый телескоп звучным индейским именем Йепун (Yepun), ученые перевели его смысл как «ярчайшая звезда ночного неба», а поскольку таковой является Сириус, то астрономы были уверены, что именем этой звезды они и назвали свой телескоп. Однако, когда «крестины» телескопов уже состоялись, некоторые специалисты по языкам усомнились в правильности этого перевода и провели дополнительные изыскания. Не так-то легко оказалось найти знатоков почти вымершего языка. Но все же удалось выяснить, что слово «йепун» означает не «ярчайшая звезда ночи» (т. е. Сириус), а «вечерняя звезда» и относится оно к планете Венере. Заметим, что индейцы мапуче, как и многие древние народы, не отождествляли «вечернюю звезду» и «утреннюю звезду» с одной планетой Венерой в ее разных положениях относительно Солнца, а считали их двумя разными светилами. Итак, четвертый 8-метровый телескоп ESO, нареченный как «Йепун», носит имя «вечерней звезды» – Венеры. Весьма достойное астрономическое имя, хотя и не такое «звездное», как было изначально задумано.

Хотя ни один большой телескоп не повторяет предыдущие, а несет в себе новые инженерные элементы, все же эволюцию крупнейших телескопов-рефлекторов можно представить в виде смены нескольких поколений (табл. 3.3).

Каковы же особенности наземных телескопов последнего, пятого поколения? Этих особенностей много: они и в материалах, и в технологиях, и в принципиально новых идеях, уже воплощенных или ждущих своего часа. Главная черта новых телескопов – отказ от жесткого зеркала. Теперь поддержание идеальной формы главного зеркала и вообще заданных оптических параметров телескопа возложено на систему активной оптики. Что это такое?

Активная оптика

Система активной оптики – это автоматическая система для поддержания идеальной формы и правильного расположения оптических элементов телескопа-рефлектора, прежде всего его главного и вторичного зеркал. Идеальную форму (параболоида, гиперболоида или сферы, в зависимости от оптической схемы телескопа) стараются придать зеркалам при их изготовлении на оптическом предприятии, но нередко при этом остаются невыявленные дефекты. В дальнейшем качество зеркал ухудшается при их транспортировке в обсерваторию и сборке телескопа в башне. Во время эксплуатации телескопа его элементы подвергаются переменным механическим и термическим нагрузкам, вызванным поворотами телескопа при его наведении на объекты наблюдения, суточными перепадами температуры и т. п. Особенно сильно искажают форму главного зеркала телескопа его повороты по высоте, они же приводят к переменному гнутию конструкции телескопа, сбивая настройку оптических элементов.

Исторически поддержание формы оптических элементов телескопа основывалось на их жесткости. Как мы уже знаем, к концу XIX в. телескопы-рефракторы приблизились к своему пределу: с ростом диаметра и веса линз поддерживать их форму становилось все сложнее, поскольку крепление линзы возможно лишь по ее периметру. Когда диаметр линзовых объективов достиг 1 м, технические возможности оказались исчерпаны: два крупнейших в мире линзовых телескопа: рефракторы Ликской (91 см) и Йерксской (102 см) обсерваторий – никогда не будут превзойдены, во всяком случае до тех пор, пока линзы делают из стекла, а сами телескопы располагаются на поверхности Земли, в условиях обычной силы тяжести.

Разведка далеких планет - i_076.jpg

Рис. 3.28. Принципиальная схема системы активной оптики, применяемой на Европейской южной обсерватории.

Проблему деформации объектива удалось решить путем перехода к телескопам-рефлекторам: жесткая монтировка телескопа поддерживает зеркальный диск объектива по всей его нижней поверхности, препятствуя изгибу. Теперь такие оптические системы называют пассивными. Вес зеркала удавалось значительно снизить без потери жесткости, придав ему форму пчелиных сот и оставив сплошной только верхнюю, зеркальную поверхность. Наконец, для наиболее крупных зеркал диаметром 2,5–6,0 м была разработана механическая система разгрузки. Она поддерживает зеркало снизу в нескольких точках так, что сила упора зависит от положения телескопа: чем ближе к зениту смотрит телескоп, а значит, чем более горизонтально расположено его главное зеркало, тем сильнее упираются в него снизу поддерживающие «пальцы», не позволяя зеркалу прогибаться. Фактически это стало первым шагом к системе активной оптики.

1 ... 25 26 27 28 29 30 31 32 33 ... 82 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название