Разведка далеких планет
Разведка далеких планет читать книгу онлайн
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Телескопы – очень тонкие и чувствительные инструменты. Для защиты от непогоды и перепадов температуры каждый стационарный телескоп помещают в специальное здание – астрономическую башню. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей, а башни крупных телескопов обычно делают круглыми, с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также плохо влияет на качество изображений, поэтому телескоп монтируют на отдельном фундаменте, отделенном от фундамента башни. Места для строительства оптических обсерваторий подбирают очень тщательно. Обычно это вершина горы: чем выше, тем тоньше слой атмосферы, сквозь который приходится вести наблюдения. Воздух должен быть сухим и чистым, желательно безветренным. Вблизи не должно быть городов с их ярким ночным освещением и смогом. Некоторые обсерватории располагаются в экстремальных условиях (рис. 3.24), поэтому там находятся только специалисты, которые работают посменно. Другие обсерватории размещаются в «компромиссных» местах, благоприятных для наблюдений и при этом сравнительно легко доступных, с хорошим климатом. Там многие наблюдатели живут постоянно, с семьями.
Желательно, чтобы крупные обсерватории были равномерно распределены по поверхности Земли: в этом случае в любой момент можно наблюдать любой небесный объект как на северном, так и на южном небе. Однако исторически сложилось, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия крупные обсерватории стали сооружать в Южном полушарии (Чили, Южная Африка, Австралия), а также вблизи экватора (например, на Гавайях), откуда можно наблюдать как северное, так и южное небо.
Рис. 3.24. Высокогорная обсерватория «Сфинкс» в Швейцарских Альпах на высоте 3570 м. Здесь занимаются инфракрасными исследованиями атмосферы и Солнца. В башне находится 76-сантиметровый кассегреновский рефлектор.
Как правило, на обсерваториях устанавливают несколько инструментов разного «калибра» и различной специализации. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли.
Это необходимо для службы точного времени, сигналы которого передаются по радио. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана. Это необходимо для создания точных карт звездного неба. Такие фундаментальные работы обычно проводят в крупных государственных обсерваториях: Морской обсерватории США, Королевской Гринвичской обсерватории в Великобритании, Пулковской и Московской обсерваториях в России.
Большинство телескопов имеет возможность поворачиваться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент. Это небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана, проходящей через точки севера, юга и зенита. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. При этом в поле зрения телескопа светило непрерывно перемещается. Задача астронома – зафиксировать момент и место пересечения светилом небесного меридиана. Раньше это делали визуально, теперь – при помощи электронных камер.
Современные астрономы редко наблюдают в телескоп глазом. В основном телескопы используют для фотографирования небесных объектов или для регистрации их света или спектра с помощью различных электронных детекторов. Для таких работ требуется довольно длительное и чрезвычайно точное сопровождение объекта. Когда телескоп используется для фотографирования тусклых (астрономы говорят – слабых) небесных объектов, экспозиция может составлять несколько часов. Все это время телескоп должен быть нацелен точно на объект. Поэтому, как мы уже знаем, с помощью часового механизма он плавно поворачивается с востока на запад вслед за светилом, компенсируя этим вращение Земли с запада на восток. В принципе достаточно поворачивать телескоп вокруг одной оси, параллельной земной. Ее называют часовой осью, она-то и связана с часовым механизмом. Вторую ось, перпендикулярную часовой, называют осью склонений; она служит для исходного наведения телескопа на объект вдоль линии север – юг. Такую конструкцию механической части телескопа называют экваториальной монтировкой. Ее используют практически для всех телескопов, за исключением наиболее крупных, для которых более компактной и дешевой оказалась альт-азимутальная монтировка, когда телескоп следит за светилом, поворачиваясь одновременно с переменной скоростью вокруг двух осей – вертикальной и горизонтальной. Это значительно усложняет работу часового механизма, требуя компьютерного контроля.
Несмотря на наличие у телескопа высокоточного часового механизма, до недавних пор участие астронома-наблюдателя в процессе экспозиции было совершенно необходимым. Он был вынужден с помощью дополнительного телескопа-гида, укрепленного на главном инструменте, следить за точностью сопровождения объекта, компенсируя ошибки работы часового механизма, эффект атмосферной рефракции, а иногда – и атмосферное дрожание изображения. Он также должен был наводить телескоп на очередные объекты наблюдения, менять фотопластинки или переключать режимы электронной камеры, поворачивать купол башни, чтобы телескоп всегда был направлен в ее открытую щель. Все это приходилось делать в полной или почти полной темноте, чтобы зрение не теряло темновую адаптацию, фотопластинки не засвечивались, а электронные детекторы не страдали от яркого света. Максимум, что мог позволить себе наблюдатель, – это очень слабый свет темно-красного фонаря, почти не разрушающий ночное зрение. Поскольку в башне телескопа исключен какой-либо обогрев, неподвижное бдение у окуляра длинными зимними ночами требовало определенной «морозоустойчивости», а необходимость тонких движений ручками управления телескопом исключала наличие перчаток. При этом работа наблюдателя требовала большого навыка и порой граничила если не с искусством, то со спортом.
Современный телескоп
В последние десятилетия XX в. работа наблюдателя начала меняться. Были автоматизированы наведение телескопа на объекты наблюдения, движение купола вслед за телескопом и работа электронных детекторов света. На крупных телескопах были установлены автогиды – устройства, автоматически удерживающие телескоп точно наведенным на исследуемый объект. В результате постоянное присутствие наблюдателя у телескопа перестало быть необходимым, он снял тулуп и валенки и уютно устроился в отдельном теплом помещении перед экранами управляющих компьютеров. Фактически астронома у телескопа заменили инженеры у компьютера. Теперь работа ученого может ограничиваться тем, что днем он составляет программу ночных наблюдений. Но разве настоящий астроном позволит себе спать, когда на телескопе выполняются исследования по его программе? До утра в зале управления он помогает инженерам, чем может, а днем приступает к обработке полученных данных.
Рис. 3.25. Зеркало 5-метрового Паломарского рефлектора до алюминирования. Сделанное из пирекса (стекло с низким коэффициентом теплового расширения), оно благодаря сотовой структуре имело исходный вес 20 т, а после шлифовки и полировки – 14,5 т.
Стремление освободиться от рутинного труда и повысить эффективность работы телескопов привела к тому, что на некоторых обсерваториях были созданы полностью автоматические телескопы – так называемые патрульные камеры, постоянно фиксирующие вид звездного неба. Это необходимо для наблюдения переменных звезд, для поиска новых астероидов и комет, для регистрации метеоров и других неожиданных явлений. Появились также дистанционно управляемые телескопы: астроном теперь может сидеть в своем университетском кабинете, а послушный ему телескоп – располагаться на горной вершине тропического острова. Замечательно, что к некоторым таким телескопам-роботам открыт доступ для любителей астрономии (см.: www.faulkes-telescope.com).