Разведка далеких планет
Разведка далеких планет читать книгу онлайн
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Напомню: астрономические наблюдения производятся со дна воздушного океана. Уже говорилось, что, будучи сжата до плотности воды, наша атмосфера имела бы толщину 10 метров! В море с такой глубины звезды практически не видны. К счастью, наша атмосфера прозрачнее морской воды и позволяет нам видеть Вселенную. Но волнение воздушного океана, плавающие в нем облака и пыль, свечение газов и поглощение ими света звезд – все это вынуждает астрономов стремиться к «всплытию», к продвижению в верхние слои атмосферы.
Строительство обсерваторий высоко в горах, размещение телескопов на самолетах, аэростатах и, наконец, на борту космических аппаратов позволяет в той или иной степени избежать вредного влияния атмосферы, но создает новые трудности, прежде всего финансовые. Особенно дорогостоящи космические обсерватории, поэтому, за редким исключением, они создаются для наблюдения тех видов излучения, которые совершенно не проходят сквозь атмосферу к поверхности Земли, например рентгеновского или далекого инфракрасного. Для наблюдения в оптическом диапазоне астрономы до сих пор размещают большую часть своих приборов на поверхности Земли, но при этом стараются выбирать место и создавать условия, максимально выгодные для наблюдений.
Прозрачность атмосферы.В оптическом диапазоне прозрачность земной атмосферы достаточно велика: свет звезды, находящейся в зените, при наблюдении с уровня моря ослабевает на 25–50 % (меньше – у красного, больше – у голубого конца спектра), а с высоты современной горной обсерватории (2500–3000 м) в среднем на 20 %. Но атмосферное поглощение меняется в зависимости от высоты светила над горизонтом. При наблюдении звезды в зените луч света проходит минимальный путь сквозь атмосферу и поэтому испытывает минимальное поглощение. Чем больше угловое расстояние звезды от зенита, тем длиннее путь луча в атмосфере и, соответственно, сильнее ослабление света.
Для того чтобы исправить наблюдаемую яркость светила в визуальном диапазоне спектра за дополнительное поглощение света в атмосфере (как говорят, «привести наблюдения к зениту»), нужно от наблюдаемой звездной величины отнять Δm:
Эти поправки даны для наблюдателя на уровне моря; с увеличением высоты места они уменьшаются. При этом имеется в виду, что качество неба отличное. При худшем качестве неба (высокая влажность или запыленность, перистые облака) поправка становится всё больше и неопределеннее, особенно вблизи горизонта.
В ультрафиолетовом (УФ) диапазоне прозрачность атмосферы резко снижается: для волн короче 280 нм воздух практически непрозрачен. В инфракрасном (ИК) диапазоне прозрачность атмосферы очень неоднородна: в спектре существует несколько мощных полос поглощения молекулами кислорода и воды. Поэтому для наблюдения в близком ИК-диапазоне телескопы устанавливают в сухих высокогорных районах, например в пустыне Атакама или на вершинах древних гавайских вулканов (высота более 4000 м). В далеком ИК– и УФ-диапазонах наблюдения возможны только с космических станций.
Качество изображения.При выборе места для строительства обсерватории астрономов в первую очередь интересует количество ясного ночного времени. Оно измеряется в суммарном годовом количестве часов безоблачного неба в период астрономической ночи, когда погружение Солнца под горизонт превосходит 18° и уже не заметны сумеречные явления. Для старых университетских обсерваторий, размещенных вблизи крупных городов Европы, это время составляет порядка 200–300 часов в год (Пулково, Рига, Москва). Для горных обсерваторий, расположенных в южной части бывшего СССР (Крым, Кавказ, Казахстан, Узбекистан), это 1000–1500 часов в год, а для наиболее современных обсерваторий в горах Чили и на Гавайях – 2500–3000 часов, что близко к суммарному темному времени за год.
Однако даже совершенно ясная ночь может не удовлетворять астрономов по качеству изображения объектов. Воздушные слои разной плотности по-разному преломляют световой луч. Если воздух спокоен, то это приводит лишь к смещению изображения как целого, немного приподнимая его над горизонтом (атмосферная рефракция). Но если слои воздуха с различной температурой и плотностью хаотически перемешаны, то изображение звезды дрожит и размывается, точно измерить его положение и яркость становится невозможно, мелкие детали на изображениях планет, туманностей и галактик не видны. Качество изображения обычно характеризуют угловым диаметром кружка, в виде которого предстает астроному изображение звезды в телескопе. Приемлемым для наблюдений считается качество изображения в 2–3″, весьма хорошим – в 1″. На лучших высокогорных обсерваториях бывают изображения в 0,5″ и даже 0,35″. Далеко не каждая ясная ночь обеспечивает высокое качество изображения; так, ветреная погода ухудшает его в связи с усилением турбулентности в атмосфере: звезды сильно мерцают и дрожат.
Предварительный отбор перспективных мест для строительства обсерватории производится на основе метеорологической информации, а затем организуются многомесячные (иногда и многолетние) экспедиции для изучения выбранных мест. С помощью небольших экспедиционных приборов, имитирующих наблюдение с крупным телескопом, проводятся измерения качества изображений звезд в разные сезоны года. Окончательное решение о строительстве обсерватории принимают, исходя из полученных экспедициями результатов и в немалой степени – из экономических обстоятельств: наличия источников воды и электричества, морских портов, аэродромов и дорог, поскольку доставка и монтаж большого телескопа, прежде всего его многометрового зеркала, представляет сложную транспортную проблему
Даже на самых хороших с точки зрения астроклимата горных вершинах, таких как Серро-Паранал в чилийской пустыне Атакама, Мауна-Кеа на Гавайских островах, Рока-де-лос-Мучачос на о. Пальма в архипелаге Канарских островов, прозрачность атмосферы и качество изображения непрерывно изменяются. Поэтому астроном-наблюдатель регулярно делает записи в журнале наблюдений с указанием состояния неба и размера изображения звезд. При высокоточном измерении блеска переменных звезд приходится до и после измерения изучаемой звезды определять также и блеск специально выбранных звезд сравнения («стандартов»), про которые известно, что они светят очень стабильно, поэтому изменение их видимой яркости целиком связано со свойствами атмосферы Земли.
Одним из простых способов дать количественную оценку качества неба является указание на самую слабую звезду, видимую невооруженным глазом. Хотя каждый человек определяет самую слабую звезду по-своему, в среднем эта величина примерно одинакова для всех людей с нормальным зрением. Индивидуально для каждого наблюдателя такой метод определения качества неба дает весьма надежную относительную оценку. Для определения слабейшей из видимых звезд принято использовать область неба вблизи северного полюса мира. Эта область имеет несколько преимуществ: на средних северных широтах она незаходящая, ее высота не меняется в течение ночи и года, так что изменением прозрачности атмосферы с высотой можно пренебречь. В этой области нет ярких звезд и не бывает планет, которые бы слепили глаза. Слабые звезды там довольно далеки друг от друга и поэтому легко отождествляются. Кроме того, поле вокруг Полярной звезды имеет простую конфигурацию и легко запоминается.
Загрязнение ночного неба искусственным светом.Помимо естественных факторов, в XX в. астроклимат испытал существенное влияние цивилизации. Важнейшим отрицательным фактором стало ночное освещение городов, сделавшее невозможным проведение в них астрономических наблюдений.
На протяжении XX в. большинство людей лишилось захватывающего вида Вселенной, которым могли наслаждаться их предки в любую ясную ночь. Распространение электрического освещения и рост городского населения стали причиной быстрого роста яркости неба над городами. Немногие из современных людей видели первозданное темное небо. Для городского жителя усыпанное звездами небо доступно только в планетарии. Комета Хейла – Боппа (1997 г.) была самой зрелищной кометой нашего времени, но из-за засветки городов для большинства людей она выглядела как едва заметный размытый шарик. Даже в сельской местности слабое дворовое освещение часто затмевает великолепие ночного неба. Один из наиболее известных любителей астрономии XX в. Лесли Пелтье в своей автобиографии с сожалением вспоминает о красоте ночного неба: «Даже на ферме не видны больше Луна и звезды. Данное нам Господом право любоваться звездами фермер разменял на ватты своего круглосуточного солнца. Его дети уже никогда не увидят благословенной темноты небес».