-->

Есть идея!

На нашем литературном портале можно бесплатно читать книгу Есть идея!, Гарднер Мартин-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Есть идея!
Название: Есть идея!
Дата добавления: 15 январь 2020
Количество просмотров: 282
Читать онлайн

Есть идея! читать книгу онлайн

Есть идея! - читать бесплатно онлайн , автор Гарднер Мартин
Книга известного американского популяризатора науки Мартина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами. Рассчитана на самый широкий круг читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 18 19 20 21 22 23 24 25 26 ... 50 ВПЕРЕД
Перейти на страницу:

Не следует думать, будто решение задачи становится сложнее оттого, что остатки при делении на различные числа не совпадают. В качестве примера, подтверждающего необоснованность подобных опасений, мы приведем старинную задачу-головоломку, прототип которой встречается в древнеиндийских трактатах по арифметике VII в.

Старушка несла на базар корзину яиц. Испугавшись пронесшейся мимо лошади, она выронила из рук корзину, и часть яиц разбилась. На вопрос, много ли яиц было в корзине, старушка ответила, что не сильна в арифметике и точное число яиц назвать не может. Правда, потом она все-таки вспомнила, что когда пересчитывала яйца парами, тройками, четверками и пятерками, у нее оставались лишние яйца (1, 2, 3 и 4 соответственно). Сколько яиц старушка несла на базар?

На первый взгляд кажется, что эта задача намного труднее предыдущих. В действительности же она ничем не отличается от первой части нашей рой задача, так как остаток от деления каждый раз на единицу меньше делителя. Решается она таким же способом: нужно найти НОК чисел 2, 3, 4, 5 и вычесть из него единицу.

Задача действительно становится более трудной, если разность между делителем и остатком зависит от делителя. Если у вас есть микрокалькулятор, вы можете на досуге показать своим друзьям забавный фокус.

Фокусник садится в кресло спиной к аудитории. Кто-нибудь из зрителей задумывает любое число не больше 1000, делит задуманное число на 7, 11 и 13, называя каждый раз вслух остаток от деления.

Чтобы не задерживать аудиторию, все вычисления зритель может производить на микрокалькуляторе. Остаток от деления проще всего находить по следующему рецепту: произвести деление, вычесть из полученного частного целую часть, а дробную умножить на делитель, после чего округлить произведение до ближайшего целого числа.

Фокусник, зная лишь три остатка, может отгадать задуманное число. Для этого он достает из кармана свой микрокалькулятор и производит вычисления по следующей «тайной» формуле, которую можно записать на небольшом клочке бумаги и приклеить к передней панели микрокалькулятора:

Есть идея! - i469.png

где ab и c — остатки от деления задуманного числа на 7, 11 и 13. Задуманное число равно остатку от деления числителя формулы на знаменатель.

Секрет формулы раскрывается просто. Первый коэффициент равен наименьшему кратному произведения bc, которое на единицу больше числа, кратного a. Найти такое число можно по определенным правилам, но когда делители ab и c не слишком велики,

как в нашем случае, то проще всего действовать прямым подбором: выписать кратные произведения ac (143, 286, 429, 572, 715, …) и найти среди них то, которое при делении на a дает остаток 1. При a = 7 таким кратным является число 715.

Аналогичным образом вычисляются и остальные коэффициенты. Второй коэффициент равен наименьшему кратному произведения ac, которое на единицу больше числа, кратного b, а третий коэффициент равен наименьшему кратному произведения ab, которое на единицу больше числа, кратного c. В знаменателе формулы стоит просто произведение abc. Пользуясь этим алгоритмом, вы можете заготовить «тайную» формулу для любого набора взаимно простых чисел (то есть чисел, не имеющих общих делителей, кроме единицы). Сами числа не обязательно должны быть простыми.

Доказательство формулы для общего случая требует знания так называемой теории вычетов и замечательной теоремы, известной под названием «китайской теоремы об остатках». Она играет важную роль в доказательстве многих нетривиальных теорем теории чисел и решении многих научных проблем.

В качестве упражнения попробуйте вывести «тайную» формулу для упрощенного варианта того же фокуса, восходящего к Сунцзу, китайскому математику, жившему в 1 в., одному из тех ученых, в честь которых теорема об остатках получила название китайской. Задумывать разрешается любое число от 1 до 105. Делить задуманное число следует на 3, 5 и 7. «Тайная» формула оказывается в этом случае столь простой, что после некоторой тренировки вы сможете проделывать все необходимые вычисления «в уме».

Глаза и ноги

Есть идея! - i183.png

Прежде чем закончить свою прогулку, Боб и Элен решили заглянуть в зоопарк. В одном вольере они увидели жирафов и страусов.

Есть идея! - i184.png

Выйдя из зоопарка, Боб обратился к Элен.

Боб. Ты не пересчитала жирафов и страусов?

Элен. Нет, а сколько их было?

Боб. Сосчитай сама. Всего у страусов и жирафов было 80 глаз и 44 ноги.

Есть идея! - i185.png

Элен сразу сообразила: 30 глаз означает, что в вольере было 15 животных.

Есть идея! - i186.png

Элен. Я могла бы перебрать все возможные случаи от 6 жирафов и 15 страусов до 15 жирафов и 0 страусов, но в этом нет надобности.

Есть идея! - i187.png

Элен. Если бы все 15 животных ходили на 2 ногах, то всего у них было бы 30 ног.

Есть идея! - i188.png

Элен. Но ты, Боб, сказал, что у 15 животных 44 ноги, поэтому 14 ног «лишних». Они могут принадлежать только жирафам. Значит, в вольере 7 жирафов.

Есть идея! - i189.png

Боб. Все правильно! А раз в вольере 7 жирафов, то страусов должно быть 8.

Двуногие и четвероногие

Идея, позволившая Элен найти решение задачи, проста, но, может быть, вам хочется проверить ответ алгебраически? Сходится ли ваш ответ с тем, который получился у Элен?

А вот забавная головоломка, придуманная по образу и подобию предыдущей задачи, но требующая для решения иного подхода. На арене небольшого цирка выступает группа наездников. Если пересчитать участников номера (лошадей и всадников) по головам и ногам, то всего наберется 18 голов и 50 ног. Кроме того, в зверинце при цирке содержатся дикие животные. Если пересчитать их по головам и ногам, то получится 11 голов и 20 ног. Среди них четвероногих вдвое больше, чем двуногих. Сколько наездников и лошадей выступает в цирке и сколько диких животных содержится в его зверинце?

Вы без особого труда найдете, что в цирке выступают 11 наездников на 7 лошадях. Но когда вы попытаетесь определить число диких животных, то, к своему удивлению, получите отрицательное число.

Удастся ли вам решить задачу самостоятельно, не заглядывая в конец книги?

Столкновение на полном ходу

Есть идея! - i190.png

Когда друзья дошли до того места, где стояла спортивная машина Боба, он предложил подвести Элен к дому, куда недавно переехали ее родители.

Есть идея! - i191.png

По дороге Боб придумал для Элен хорошую задачку.

Есть идея! - i192.png

Боб. Видишь вой тот грузовик впереди? Он гонит вовсю, но я постараюсь его догнать.

Есть идея! - i193.png

Боб. Предположим, что грузовик делает 65 км/ч, а я еду со скоростью 80 км/ч.

Есть идея! - i194.png

Боб. Предположим также, что мы находимся сейчас в 1500 м от грузовика.

Есть идея! - i195.png

Боб. Если шофер грузовика и я будем выдерживать каждый свою скорость и я не сверну, мы заведомо врежемся в грузовик. Вот тебе и задачка, Элен: на каком расстоянии от грузовика мы будем за 1 мин до столкновения?

1 ... 18 19 20 21 22 23 24 25 26 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название