-->

Есть идея!

На нашем литературном портале можно бесплатно читать книгу Есть идея!, Гарднер Мартин-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Есть идея!
Название: Есть идея!
Дата добавления: 15 январь 2020
Количество просмотров: 282
Читать онлайн

Есть идея! читать книгу онлайн

Есть идея! - читать бесплатно онлайн , автор Гарднер Мартин
Книга известного американского популяризатора науки Мартина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами. Рассчитана на самый широкий круг читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 50 ВПЕРЕД
Перейти на страницу:

Решение задачи 1. Докажем, что куб 4×4×4 невозможно разрезать на 64 кубика менее чем 6 плоскими разрезами (при условии, что после каждого разреза части куба разрешается перекладывать). Рассмотрим для этого любой из 8 внутренних кубиков. Ни один из внутренних кубиков не имеет «готовых» граней, которые бы совпадали с гранями большого куба. Следовательно, каждую из 6 граней внутреннего куба необходимо выделить, для чего требуется провести 1 плоский разрез. Поскольку ни одна плоскость не может выделить более одной грани куба, то число разрезов, которые необходимо провести, чтобы высечь все 6 граней куба, должно быть не меньше 6.

Существует ли общий метод, позволяющий распилить любой прямоугольный параллелепипед с целочисленными длинами ребер на единичные кубы при минимальном числе разрезов (части параллелепипеда разрешается переставлять)? Да, такой метод существует и заключается в следующем. Рассмотрим 3 разных куба, длины ребер которых равны длине, ширине и высоте параллелепипеда. Для каждого куба определим минимальное число разрезов, которые необходимо провести, чтобы разделить его на слои единичной толщины. Для этого проведем плоский разрез перпендикулярно ребру куба через целую точку, расположенную как можно ближе к середине ребра (если в длине ребра укладывается четное число единиц, то распил делит ребро пополам; если же в длине ребра укладывается нечетное число единиц, то распил проходит на расстоянии половины единицы длины от середины ребра), переложим полученные части и будем повторять всю процедуру до тех пор, пока весь куб не распадется на слои единичной толщины. Сумма трех минимумов (по одному для каждого ребра) даст нам ответ задачи.

Например, чтобы распилить на единичные кубики прямоугольный параллелепипед 3×4×5, необходимо провести 7 плоских разрезов: 2 для ребра 3, 2 для ребра 4 и 3 для ребра 5. Доказательство этого алгоритма было впервые опубликовано в журнале Mathematics Magazine в 1952 г.

Решение задачи 2. Задача решается просто, если сообразить, что на еще одной грани куба можно провести третью диагональ, соединяющую концы диагоналей, проведенных мисс Евклид (рис. 16).

Есть идея! - i148.png

Три диагонали образуют равносторонний треугольник. Так как каждый из углов равностороннего треугольника равен 60°, то и угол между проведенными мисс Евклид диагоналями равен 60°.

Вторая задача мисс Евклид допускает изящное обобщение. Предположим, что мисс Евклид провела на поверхности куба две прямые, соединяющие середины AB и C трех ребер (рис. 17). Чему равен угол ABC между этими прямыми?

Есть идея! - i149.png

Решение задачи находим по аналогии с предыдущим решением. Прежде всего соединим отрезками прямых середины ребер на четырех остальных гранях так, чтобы все шесть отрезков образовали замкнутую ломаную. Ясно, что все шесть отрезков имеют одинаковую длину и углы между любыми двумя смежными отрезками также одинаковы. Следовательно, если бы нам удалось доказать, что все шесть вершин ломаной лежат в одной плоскости, то мы могли бы утверждать, что наша шестизвенная замкнутая ломаная имеет форму правильного шестиугольника. Доказать нужное нам утверждение нетрудно, но в его справедливости вы можете убедиться экспериментально, распилив деревянный куб на две половинки вдоль плоскости, проходящей через середины шести ребер.

То, что поперечное сечение, делящее куб на две половины, может иметь форму правильного шестиугольника, неожиданно и в какой-то мере противоречит интуиции. Ну, а коль скоро мы знаем, что две проведенные мисс Евклид линии являются двумя смежными сторонами правильного шестиугольника, то найти угол между ними не составляет никакого труда: он равен 120°.

Рис. 17 наводит на мысль о еще одной интересной задаче. Предположим, что муха хочет проползти по поверхности куба из точки A в точку C. Можно ли считать путь, образованный отрезками AB и BC, кратчайшим?

Эту задачу легко и просто решит тот, кто догадается, что кратчайший путь из точки A в точку B на поверхности куба можно найти, если две смежные грани куба развернуть так, чтобы их плоскости совпали: кратчайшим будет отрезок прямой, соединяющий на развертке точки A и C. Развернуть две смежные грани куба так, чтобы плоскости их совпали, можно двумя способами, выбрав либо переднюю и верхнюю грань, либо переднюю и правую грань, поэтому при решении задачи необходимо соблюдать осторожность. В первом случае мы получаем путь длиной √2, во втором — путь длиной √2,5.Следовательно, на рис. 17 изображен кратчайший путь на поверхности куба из A в C.

Решение задачи 3. Разумеется, длину диагонали куба можно определить, измерив линейкой длину ребра и дважды применив теорему Пифагора. Но диагональ куба можно измерить линейкой гораздо более простым способом. Поставив куб на край стола, отмерим отрезок, равный по длине ребру куба, и концы отрезка пометим, после чего сдвинем куб на длину ребра вдоль края стола (рис. 18). Расстояние от A до B в точности равно диагонали куба, и его можно измерить линейкой.

Есть идея! - i150.png

Как вы стали бы измерять радиус большого шара, если бы у вас под рукой была только линейка, длина которой составляет ⅔ от диаметра шара? Один из простых способов состоит в том, чтобы запачкать шар сажей или губной помадой и прижать его к стене так, чтобы на стене в точке касания осталась отметка. Измерив линейкой расстояние от пола до отметки, вы определите радиус шара. Можете ли вы предложить аналогичные методы, позволяющие при помощи какого-нибудь ухищрения измерить высоту конуса или пирамиды? Можете ли вы точно измерить радиус цилиндрической трубы, если под рукой у вас имеется только плотницкий угольник?

По ковровой дорожке

Есть идея! - i151.png

Ковровое покрытие для кольцевого коридора в здании нового аэропорта было поручено изготовить компании, возглавляемой мистером Тэком.

Есть идея! - i152.png

Увидев план коридора, мистер Тэк решил, что над ним подшутила, я разгневался: единственным размером, указанным на чертеже, была длина хорды, касательной к внутренней стене коридора.

Есть идея! - i153.png

Мистер Тэк. Уберите чертеж, чтобы я его больше не видел! Как, скажите на милость, я смогу представить смету на ковровое покрытие, если мне не известна площадь коридора? Посоветуюсь-ка я с моим дизайнером мистером Шарпом.

Есть идея! - i154.png

Мистер Шарп, искусный геометр, выслушал мистера Тэка спокойно.

Мистер Шарп. Длина этой хорды, мистер Тэк, — единственный размер, который мне нужен. Я подставлю его в известную мне формулу и узнаю площадь коридора.

Есть идея! - i155.png

Мистер Тэк с минуту удивленно смотрел на мистера Шарпа, а потом улыбнулся.

Мистер Тэк. Благодарю вас, мистер Шарп, я могу назвать вам площадь коридора и без этого.

Знаете ли вы, как мистер Тэк сумел определить площадь кольцевого коридора?

Удивительная теорема

Мистер Тэк рассуждал следующим образом. Мистер Шарп пользуется заслуженной репутацией искусного и сведущего геометра, поэтому, если он говорит, что у него есть формула, позволяющая вычислять площадь кольца по длине хорды, касательной к внутренней окружности, то она у него действительно есть. Если длина хорды, касательной к внутренней окружности, будет оставаться равной 100 м, то, как бы ни изменялись радиусы внешней и внутренней окружностей, по формуле мистера Шарпа площадь кольца должна оставаться неизменной.

1 ... 14 15 16 17 18 19 20 21 22 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название