Целостный метод - теория и практика

На нашем литературном портале можно бесплатно читать книгу Целостный метод - теория и практика, Телемтаев Марат Махметович-- . Жанр: Политика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Целостный метод - теория и практика
Название: Целостный метод - теория и практика
Дата добавления: 16 январь 2020
Количество просмотров: 228
Читать онлайн

Целостный метод - теория и практика читать книгу онлайн

Целостный метод - теория и практика - читать бесплатно онлайн , автор Телемтаев Марат Махметович

Целостность и системность деятельности - ключевые факторы успешности современного профессионала, фирмы, социальных институтов, государства, нации.

Главная тема монографии - открытие целостного метода и доказательного подхода к его реализации в практической деятельности. Разработаны целостный метод (теория) и инструменты его реализации - целостный подход (методология теории), метод системной технологии (методология практики целостной деятельности). Создана возможность целостно и системно решать проблемы любого формата - от инновационных проектов национального и регионального развития, экономико-финансовых задач систем управления разного уровня до проблем создания эффективных компьютерных систем и технических устройств. Позволяет каждому профессионалу конструировать целостные теории и практики для разнообразных направлений своей деятельности.

Книга полезна инженерам, экономистам, преподавателям, ученым и специалистам, государственным деятелям и топ-менеджерам, предпринимателям для реализации целостности и системности в теории, в проекте и на практике. Полезна также и обучающимся - студентам, магистрантам, аспирантам, для формирования целостности собственного мышления и практики.

Усвоение теории и практики целостного метода поддерживается в книге большим количеством примеров практического применения - от разработки национальной идеи российского народа и целостности государственного управления до целостной модели знания специалиста, рынка знаний предприятия и конструкции бесшумного вентилятора.

В каждом разделе предлагаются типовые для любой профессиональной деятельности задачи использования метода. Опыт решения данных задач поможет учащемуся и опытному специалисту сформировать собственный вариант целостного мышления и практики.

За консультациями можно обратиться на сайт systemtechnology.ru.

Для корректного отображения математических операндов используйте шрифт с поддержкой Юникода (например, Arial Unicode MS)

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 83 84 85 86 87 88 89 90 91 ... 135 ВПЕРЕД
Перейти на страницу:

• В процессе формирования конкретной модели системы используются операции множества W (напр. при декомпозиции системы), состав которого определяется в зависимости от задач анализа и синтеза системы. Во многих важных приложениях достаточно, если множество-носитель образуете с W решетку или алгебру Кантора.

Формирование конкретной модели системы с определенным набором элементов из {A, B, D, E} и множества ? может производиться следующим образом. Будем считать, что множества A?, B?, D?, E? определены, как наборы элементов, пригодных для всех возможных конкретных реализаций S.

Вначале устанавливается некоторое отношение на множестве B?, т.е. выбираются и упорядочиваются процессы b ? В, B ? B?. Тем самым упорядочивается набор элементарных процессов достижения цели, который должен обеспечить системный процесс достижения цели, для реализации которого, в данном случае, нужна система S. Одновременно устанавливается необходимость обеспечения взаимодействий для пар процессов из В?, определяются требования к элементарным взаимодействиям со стороны каждого процесса b, b ? В?.

Затем устанавливается отношение на паре множеств В?, A?, определяются и упорядочиваются основные элементы из А?, обеспечивающие выбранный набор процессов из В?, А ? А?, В ? В?.

Параллельно устанавливается некоторое отношение на паре множеств В?, D? и определяется набор элементарных процессов взаимодействия d? D, D ? D?, обеспечивающих взаимодействие между элементарными процессами b, b ? В. При этом, для учета ограничений на элементарные процессы d ? D со стороны элементов множества А, устанавливается отношение на паре A, D.

И, наконец, устанавливаются отношения на паре D?, Е?, позволяющие сформировать набор элементов е ? Е, E ? E?, которые войдут в данную реализацию системы. Для учета ограничений на элементы е ?Е со стороны элементов множеств А и В должны быть установлены соответствующие отношения на парах А, Е и В, D.

• В процессе формирования модели конкретной реализации S описанная последовательность многократно повторяется и образует, в конечном счете, системный процесс достижения цели (модель которого описана в разделе 4.2) в некоторой системе-субъекте по созданию системы S. В качестве ресурсов выступают описания возможностей использования различных видов ресурсов для достижения некоторой глобальной цели, поставленной перед создаваемой системой; в качестве методов выступают описания различных процессов, которые можно реализовать для достижения цели.

Вначале описывается глобальная цель создания системы (этап 1), затем возможные виды ресурсов для построения элементов системы (этап 2), далее – процессы использования ресурсов (этап 3), которые можно реализовать в системе и ограничения (этап 4), накладываемые на цель, ресурсы, процессы. Затем выбирается конкретный процесс использования ресурсов для достижения цели (этап 7), процесс апробируется (этап 5), оценивается (этап 6). Если не возникает необходимости создания системы, то найденный процесс используется для достижения глобальной цели. Но в большинстве случаев оказывается, что имеющиеся ресурсы позволяют достичь глобальную цель только в виде процесса последовательного достижения ряда частных целей. Поэтому на следующих циклах производится преобразование глобальной цели в систему F локальных (на уровне подсистем) и, далее, элементарных целей (на уровне элементов) (этап 1); тогда этапы 2,3,4 будут заключаться в создании системы S на множествах элементов из имеющихся ресурсов и элементарных процессов с учетом ограничений, этапы 5,6,7 будут заключаться в анализе вариантов конкретной реализации системы. В результате на некотором уровне элементарности будут сформированы множества типа {А, B, D, Е}, описывающие модели конкретных реализаций системы для различных целей, соответствующих различным возможным изделиям и продуктам системы.

• В соответствии с принципом системности можно определить, в данном случае, что создаваемая система S является системой-объектом S0, система целей F, описывающая изделие системы, является системой-результатом SF Для моделирования системы-объекта и системы-результата должна использоваться одна модель общей системы (4.4.1).

Таким образом, предлагаемый подход позволяет проводить исследование F и S по отдельности, учитывая отношения взаимосвязи, которые устанавливает между ними создающая система – субъект Sc.

Отношения взаимосвязи, которые установятся в результате, между элементами систем F и S, обозначим через ?i и ?i-1, I ? {A, B, D, E}.

• Модели F и S и множества A, B, D, E описывают ряд взаимосвязей, которые некоторая создающая система устанавливает для конкретной реализации S. Так, отношение взаимосвязи ?, ? ? A ? B, описывает тот факт, что каждый элемент системы аi, ai ? A, реализует один и только один элементарный процесс достижения цели bi, bi ? В. В свою очередь, отношение а-1 описывает взаимосвязи такого вида: элементарный процесс достижения цели bi ? B, реализуется одним элементом ai ?A. Аналогичным образом описываются все остальные взаимосвязи.

Модели процесса и структуры. В общем случае каждому элементу ai из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ? D, через которые ai воздействует на другие элементы множества А. Каждому элементу aj из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ? D, через которые aj подвергается воздействию других элементов из А. Пересечение Di ? Dj = Dij множество элементарных процессов взаимодействия, через которые ai воздействует на aj (для упрощения в дальнейшем примем, что Dij — одноэлементные множества: Dij = {dij}). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов Ei, Ej, Eij, обеспечивающие, соответственно, множества процессов взаимодействия Di, Dj, Dij. Будем считать, что главным предикатам ?1-?r соответствуют отношения ?A, ?B, ?D, ?E строгого частичного порядка и отношения ?, ?-1, ?, ?-1, ?, ?-1, ?, ?-1, ?AF, ?-1AF, ?-1BF, ?DF, ?-1DF, ?EF, ?-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.

• Сформируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов ?; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения ?, ?, ?, ?, ?в, и, соответственно, ?-1, ?-1, ?-1, ?-1, ?-1в. Для описания взаимосвязи с F выберем отношение ? вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ?1 + ?r описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.

• Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его также полным системным процессом) — это множество взаимосвязанных элементарных процессов:

1 ... 83 84 85 86 87 88 89 90 91 ... 135 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название