В погоне за красотой
В погоне за красотой читать книгу онлайн
Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида. Эта задача мучила математиков более двух тысяч лет; была решена Лобачевским и Бояи, а затем совершенно неожиданно развитие их идей Риманом и Эйнштейном привело к решающему изменению наших представлений о вселенной.
В этой книге рассказывается о людях, работавших над этой проблемой, людях, разделенных веками, никогда не знавших друг друга, различных почти во всем, но поразительно схожих и близких в главном.
И о самой задаче.
Примерно две трети книги можно читать, вообще не зная и не любя математику; остальная часть рассчитана на тех, кто окончил 7–8 классов, хотя, формально говоря, чтобы понять почти все, можно не знать почти ничего.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Тоже весьма наглядное утверждение. Вместо постулата Евклида тут постулируется один его частный случай. Легко увидеть, что этого вполне достаточно, чтобы доказать пятый постулат в евклидовой форме (обратную теорему о параллельных). Впрочем, для тех, кто только знакомится с геометрией, это достойная и довольно сложная задача, вполне заслуживающая внимания. Я приведу здесь некоторые указания, предоставляя желающим довести дело до конца.
Те, у кого это предложение не вызывает энтузиазма, могут спокойно пропустить всю математику. А мы примем постулат Лежандра — перпендикуляр и наклонная к общей секущей пересекаются — и будем доказывать постулат V в форме Евклида — обратную теорему о параллельных прямых.
Докажем сначала вспомогательную теорему — лемму.
Пусть при пересечении двух прямых I и II третьей оказалось, что <А < π/2, а сумма <А + <С1 = π. Тогда согласно «прямой теореме» мы знаем, что эти прямые не пересекаются — они параллельны.
Просмотрите снова доказательство «прямой теоремы».
Из точки С опустим перпендикуляр на прямую I.
Это всегда можно сделать. Соответствующая теорема была доказана без всякого участия понятий о параллельных.
Докажите, что при принятом условии (<А < π/2) перпендикуляр СВ будет расположен так, как показано на чертеже.
Доказывайте от противного и используйте теорему о внешнем угле треугольника.
Далее имеем: <D + <N = <C1, Буква N выбрана, чтобы напоминать о слове «неизвестный».
Затем имеем: <A + <D + <N = π.
(Вспомните условие!)
Рассмотрите теперь Δ АВС.
Для суммы его углов есть три возможности.
<A + <D + π/2 >< π;
Обратите внимание! Нельзя пользоваться теоремой: сумма углов треугольника равна π. Эта теорема — следствие постулата о параллельных.
Рассмотрите сначала гипотезу: <A + <D + π/2 > π.
Сравните это неравенство с равенством <A + <D + <N = π и получите: <N < π/2.
Использовав теперь постулат Лежандра, вы получите, что прямые I и II пересекаются справа от точки В. А это противоречит условию. Следовательно, гипотеза ошибочна.
Рассмотрите теперь гипотезу <A + <D + <N < π.
Совершенно аналогично покажите, что в этом случае прямые I и II пересекутся слева от точки В; отбросьте и эту гипотезу.
Вы доказали сразу две важные теоремы:
1. Сумма углов Δ АВС равна π;
2. Угол N равен 90°.
Теперь докажите «обратную теорему о параллельных», использовав следующее вспомогательное построение.
Дано: пусть при пересечении I и II третьей оказалось, что <A + <C1 < π, причем <А < π/2.
1. Опустите из точки В перпендикуляр на прямую I.
2. Проведите через точку В заведомо параллельную прямую II, то есть прямую, удовлетворяющую «прямой теореме о параллельных». Докажите, что она пройдет так, как показало на чертеже.
Минуту подумайте теперь и снова, использовав постулат Лежандра, докажите, что прямая II пересечет прямую I.
Тем самым вы «доказали» постулат Евклида. Но не забудьте, что воспользовались эквивалентным постулатом.
Если вы были несколько смущены условием <А < π/2, убедитесь, что оно не ограничивает общности рассуждения.
Проверьте теперь, нет ли в рассуждении ошибок.
Приведенное доказательство имеет по меньшей мере две примечательные особенности.
Во-первых, мы попутно доказали, что стоит принять постулат Лежандра — эквивалент постулата Евклида, как нашелся треугольник, сумма углов которого равна π.
Во-вторых, я нигде не читал этого доказательства, а придумал его за несколько минут. Пишу это отнюдь не из честолюбивой надежды, что читатель будет восхищен моим математическим талантом.
Эквивалентность постулатов Лежандра и Евклида можно доказать и проще и изящней, буквально в две строчки. Нужно только взять пятый постулат в форме аксиомы Плейфера («Через данную точку к данной прямой можно провести лишь одну параллельную»).
Так что, вообще говоря, теорема наша и неуклюжа и ненужна. Ее появление оправдано лишь тем, что она подсказывает другую и уже действительно важную теорему: если сумма углов треугольника равна π, справедлив пятый постулат. Кроме того, она полезна и для «разминки». А самое основное, мне кажется, подобные «исследования» показывают, как самые первые, самые наивные шаги сразу приводят к все новым и новым эквивалентам пятого постулата. И конечно, нет сомнений, что наша нехитрая ниточка рассуждений была протянута не одним и не двумя комментаторами Евклида.
Но, убедившись, как несложно упрощать формулировки пятого постулата, мы невольно должны задуматься: почему же не сделал этого сам Евклид?
Автор не может удержаться. Обстановка требует риторических вопросов. Вот и они.
Неужели Евклид не пытался доказывать свою теорему?
Неужели ученый такого масштаба, такой тонкий аналитик не смог получить несколько элементарных следствий и выбрать за постулат наиболее естественное и очевидное?
Неужели он — последователь Аристотеля и Платона — мог упустить такую возможность?
Неужели он мог погубить всю гармонию геометрии, вызвав тем самым гнев бессмертных олимпийских богов?
Неужели любой из великого скопища комментаторов глубже и лучше разбирался в проблеме, чем он?
Читатели, конечно, отлично понимают, что все эти лицемерные восклицания автор позволяет себе с единственной целью — подчеркнуть абсурдность подобных предположений. Говоря же серьезно, наиболее правдоподобная версия такова.
Евклид, как и его предшественники, безусловно, пытался свести пятый постулат в ранг теоремы — доказать его, не привлекая дополнительных предположений.
Учитывая исключительное положение пятого постулата в «Началах», а также пресловутые 28 теорем, предшествующие ему, можно уверенно заключить, что эта проблема волновала Евклида, что уделял он ей особое внимание.
Вспомнив, что все методы элементарной геометрии были полностью разработаны уже в те времена, вспомнив, что, например, исследования по теории конических сечений неизмеримо сложнее большинства рассуждений, связанных с пятым постулатом…
Вспомнив (еще раз), что пятый постулат в той форме, как приводит его Евклид, — это граничащий с издевкой вызов всем требованиям Платона и Аристотеля…
Вспомнив, что Евклид был, судя по всему, их верным последователем…
Вспомнив, наконец, что Евклид был блестящий геометр…
Мы приходим к единственному выводу.
В процессе тщетных попыток доказать пятый постулат Евклид, по-видимому, нашел несколько эквивалентных формулировок. Простых. И очевидных. Но Евклид оказался на высоте.
С одной стороны, он ясно понимал, что, не используя какого-либо эквивалентного предположения, доказать постулат не удается. А с другой — ни одна из эквивалентных форм пятого постулата не удовлетворяла, на его вкус, требованию очевидности. Поэтому он пришел к выводу, что положение очень печально и задача не решена. И, как честный геометр, он решил особо подчеркнуть: пятый постулат — отверженный, презренный уродец в дружном семействе аксиом. А если так, то выбор самой сложной формы и целесообразен и полностью оправдан.