Механика от античности до наших дней
Механика от античности до наших дней читать книгу онлайн
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
к их линейной комбинации — обобщенным импульсам
которые он впервые ввел в «Мемуаре о вариации произвольных постоянных в вопросах механики» (1809). В «Курсе механики» он использует это новое соотношение в виде
Многие вопросы статики и динамики разработаны в нем в виде, удобном для приложений.
«Курс механики» неоднократно переиздавался, и в него были введены разделы, посвященные прикладной механике. В частности, в издание 1833 г. включен раздел, посвященный механике машин «О применении принципа живых сил к вычислению движения машин», в котором Пауссон рассматривает построение уравнения движения машины в общем виде. «Машины, по его определению, суть приспособления или системы твердых тел, предназначенные для переноса сил от одной части этих приспособлений к любой из иных частей». Заметим, что до Пуассона вопросами механики машин обычно занимались представители геометрического направления в механике, а представители аналитического направления обходили их стороной. Пуассон впервые применил аналитические методы к разработке подобных прикладных проблем, и в этом смысле его «Курс механики» явился одним из камней, заложенных в фундамент прикладной механики. Труды Пуассона, и в частности «Курс механики», на котором было воспитано не одно поколение французских ученых, сыграли значительную роль в развитии многих узловых проблем механики.
Закончим наш краткий обзор следующим диалогом Лагранжа с Пуассоном. «Я стар, — сказал однажды Лагранж Пуассону, — во время моих бессонных ночей я развлекаюсь числовыми сравнениями; выслушайте меня, это любопытно. Гюйгенс тринадцатью годами был старше Ньютона; я тринадцатью годами старше Лапласа; Лаплас тридцатью двумя годами старше вас» {178}.
Гениальный Лагранж весьма тонко и деликатно включил Пуассона в число великих творцов механики.
VII.
МЕХАНИКА В XIX ВЕКЕ
РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ
Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В четырехлетнем возрасте он неплохо знал географию и свободно читал литературу на английском языке, а восьми лет овладел итальянским и французским языками, изучал арабский, санскрит и латынь. Особенно большую склонность проявлял юноша к математике.
В 1824 г. Гамильтон поступил в Тринити-колледж Дублинского университета, где успешно изучал математические науки и разрабатывал геометрическую оптику, или теорию лучей. В возрасте 22 лет молодой ученый был назначен профессором астрономии колледжа св. Андрея Дублинского университета и королевским астрономом Ирландии. В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лекции по астрономии.
В 1837 г. Гамильтон был избран президентом Ирландской академии наук. Научные заслуги его нашли широкое признание во всем мире. В частности, в 1838 г. он был избран членом-корреспондентом Петербургской академии наук.
В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знаменитых работ — «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практических запросов их применения в оптических приборах. В третьем добавлении к этому труду ученый на основании сложных математических вычислений предсказал существование нового, до тех пор неизвестного явления — внешней и внутренней конической рефракции в двухосных кристаллах. Открытие Гамильтона вызвало огромный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.
Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый принцип наименьшего действия. Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и названная им «действием», должна иметь некоторое минимальное значение. Несколько позже Гамильтона и независимо от него принцип наименьшего действия был разработан русским ученым М.В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона — Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.
Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики (функция Гамильтона Н) оказалась при довольно широких условиях совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.
Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями, но последнее достаточно полно раскрылось лишь через столетие.
Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и законченном виде: он вел свои исследования, переходя к механике, преимущественно в предположении, что имеет дело с системой свободных материальных точек, взаимодействующих с силами, зависящими только от взаимных расстояний. Обобщение результатов и методов Гамильтона, устранение излишних ограничений, тщательная разработка математических методов является заслугой К. Якоби и М.В. Остроградского. Поэтому часто можно встретить в литературе термин «теория Гамильтона — Якоби», но исторически более справедливо говорить о теории Гамильтона — Якоби — Остроградского.
Эта теория является основным достижением аналитической механики XIX в. Поначалу казалось, что ее главное значение в развитии аналитических методов. Но более глубокое выявление связи механики с оптикой и раскрытие возможности нового геометрического истолкования механических проблем имели принципиальное значение. Во второй половине XIX в. накопление новых фактов и разработка новых методов в аналитической механике шло главным образом по линии геометризации. В начале XX столетия, когда это направление сочеталось с новыми течениями в физике, именно на созданной им основе были пересмотрены основные понятия классической механики.
Английский математик и механик. Гамильтон внес большой вклад в развитие вариационных принципов механики. Построил систему комплексных чисел, так называемых кватернионов
Труды Гамильтона по механике получили высокую оценку. В 1842 г. па ежегодном собрании Британской ассоциации в Манчестере К. Якоби сказал: «Гамильтон — это Лагранж вашей страны». В 1866 г. Тэт охарактеризовал работу Гамильтона по динамике как «крупнейшее дополнение, полученное теоретической динамикой с тех пор, как были достигнуты великие успехи Ньютоном и Лагранжем». В 1835 г. Гамильтон был награжден золотой медалью Английского королевского общества.