Механика от античности до наших дней
Механика от античности до наших дней читать книгу онлайн
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
где m — масса одной из точек системы, v — ее скорость, ds — элемент пути, или, иначе говоря, бесконечно малый отрезок траектории точки т. К этому Лагранж добавляет, что ds = vdt (dt обозначает тот бесконечно малый промежуток времени, в течение которого точка т проходит путь ds), поэтому вместо m∫vds можно написать m∫v2dt или ∫mv2dt. Тут под знаком интеграла мы видим (удвоенную) живую силу точки, а так как нам надо взять сумму таких величин для всей рассматриваемой механической системы, то в итоге под знаком интеграла окажется (удвоенная) живая сила всей системы в любое мгновение. Таким образом, говорит Лагранж, рассматриваемый принцип сводится собственно к тому, что сумма живых сил всех тел от момента, когда они выходят из заданных точек, до того момента, когда они приходят в другие заданные точки, является максимумом или минимумом. Следовательно, этот принцип можно было бы с большим основанием назвать принципом наибольшей или наименьшей живой силы.
По мнению Лагранжа, такая формулировка имела бы то преимущество, что она была бы общей как для движения, так и для равновесия, поскольку в статике Лагранж доказывал, что при прохождении положения равновесия живая сила системы бывает наибольшей или наименьшей.
Лагранжу принадлежат также многочисленные работы по механике сплошной среды. В «Аналитической механике» немало места уделено гидростатике, гидродинамике, теории упругости. В этих разделах Лагранж систематизировал все результаты, полученные им и его предшественниками. В теории упругости Лагранж не располагал общими уравнениями (они были выведены позже, в 20-е годы XIX в.) и рассматривал равновесие и колебания около положения равновесия упругих тел одномерных или двумерных — типа нити, струны, мембраны. В гидродинамике Лагранж оперировал уравнениями для идеальной жидкости (т. е. совершенно лишенной внутреннего трения), выведенными для него Эйлером.
Математические трудности тут оказались настолько большими, что в общем случае Лагранж мог предложить только приближенный способ решения уравнения движения. Понадобилось немало времени, чтобы с помощью новых математических методов добиться дальнейших результатов там, где вынужден был остановиться такой гениальный ученый, как Лагранж.
ИССЛЕДОВАНИЯ ПУАССОНА ПО МЕХАНИКЕ
Симеон Дени Пуассон (1781 —1840) — выдающийся французский механик, математик и физик, научная деятельность которого тесно связана с традициями Политехнической школы. Эта школа была ведущим высшим учебным заведением Франции, поступающие в нее отбирались по жесточайшему конкурсу, а к преподаванию были привлечены лучшие ученые Франции, среди них Монж, Лагранж, Лаплас, Лакруа, Фурье. С.Д. Пуассон в 1798 г. в возрасте 17 лет поступил в эту школу, пройдя первым по конкурсу. Еще будучи учеником школы, он представил свою первую научную работу «О числе полных интегралов уравнений с конечными разностями», которая по предложению академиков Лежандра и Лакруа была опубликована. По окончании в 1800 г. Политехнической школы Пуассон был оставлен при кафедре математического анализа, руководителем которой он стал в 1806 г. В 1809 г. Пуассон был назначен профессором рациональной механики в Сорбонне.
С момента окончания Политехнической школы и до конца жизни Пуассон вел преподавательскую работу в высших учебных заведениях Франции. В 1837 г. ему как члену Королевского совета было поручено руководство преподаванием математики во всех колледжах Франции. За выдающиеся научные заслуги Пуассон в 1812 г. был избран действительным членом Парижской академии наук, а в 1826 — почетным членом Петербургской академии наук. Многочисленные исследования Пуассона охватывают все области науки, которая в то время называлась чистой и прикладной математикой. Список его сочинений составляет свыше 350 работ (не считая отдельно изданных сочинений) — это значит, что с 1800 по 1840 г. он публиковал в среднем по девять работ в год. В отношении стиля и характера своих работ Пуассон следовал Эйлеру и Лагранжу, труды которых он знал в совершенстве.
В области математики большой интерес представляют работы Пуассона по определенным интегралам, по уравнениям в конечных разностях, по теории дифференциальных уравнений с частными производными (уравнение Пуассона, интеграл Пуассона), по теории вероятностей (распределение Пуассона, теорема Пуассона). Чрезвычайно велик был диапазон его интересов в области механики. Многочисленные работы Пуассона охватывают разнообразные проблемы теоретической и небесной механики, теории притяжения, гидродинамики, теории упругости, теории колебаний, баллистики и теории механизмов и машин.
Наиболее фундаментальные его труды посвящены вопросам аналитической механики и математической физики. В исследованиях Пуассона этого цикла сказалось влияние и аналитических методов Лагранжа (в особенности в небесной механике), молекулярных представлений Лапласа (гидродинамика, механика деформируемых сред) и научного наследия Эйлера.
В области небесной механики наибольший интерес представляют его труды, в которых рассматриваются вопросы устойчивости Солнечной системы и выводятся дифференциальные уравнения возмущенного движения. При выводе этих уравнений Пуассон применил метод, в котором ввел выражение, названное впоследствии скобками Пуассона, которое получило широкое применение во многих вопросах теории уравнений с частными производными и аналитической механики. Развив методы вариации произвольных постоянных Лагранжа, Пуассон получил в явном виде выражение вариации элементов орбиты небесного тела через производные пертурбационной функции по координатам для одного из шести элементов его орбиты.
В теории притяжения особый интерес представляют его статья «Замечания об уравнении теории притяжений» (1813) и два мемуара — «О притяжении сфероидов» (1829) и «О притяжении однородных эллипсоидов» (1835), в которых он выводит свое знаменитое уравнение с частными производными Δu = f, (где Δ — оператор Лапласа) — одну из основ теории потенциала.
Французский математику механик, физик. Пуассону принадлежат важные работы по аналитической и небесной механике, теории упругости, математической физике и по различным разделам математики
Пуассон был одним из основоположников математической теории упругости. В 1819 г. он нашел решение уравнения теории упругости для одномерного случая, а в 1829—1831 гг. — для двумерного и трехмерного случаев. Его имя носит одна из основных констант теории упругости изотропных тел — коэффициент Пуассона, т. е. абсолютное значение отношения величины относительной поперечной деформации элемента тела к его относительной продольной деформации. Его вывод общего уравнения теории упругости сыграл существенную роль в теории колебаний и волн вообще и в исследовании звуковых волн в частности. В «Мемуаре об общих уравнениях равновесия и движения твердых тел и жидкостей» Пуассон впервые включил в систему дифференциальных уравнений движения жидкости уравнение теплопроводности. Его имя носит кривая, характеризующая обратимый адиабатический процесс в идеальном газе (адиабата Пуассона), уравнение которой Пуассон вывел в 1823 г.
Достижения Пуассона в области аналитической механики наиболее полно изложены в его двухтомном «Курсе механики», первое издание которого вышло в 1811 г. Этот труд, основанный на традициях Лагранжа и Лапласа, отличается в то же время большей доступностью и примерами из многих областей механики и смежных с ней разделов физики. Долгое время он был одним из лучших руководств по механике.
«Курс механики» состоит из четырех частей: статики, динамики, гидростатики и гидродинамики. В разделе статики Пуассон рассматривает условие равновесия «простых машин», с помощью которого переходит к общему закону равновесия тел. Этот закон он выводит, пользуясь принципом виртуальных перемещений, рассматривая как сами перемещения, так и проекции малых путей, описываемых точками приложения сил, на их направления. При изложении динамики Пуассон исходит из основных ее принципов: сохранения движения центра тяжести, сохранения площадей и живых сил. Исходя из последнего он показывает, почему при устройстве машин следует избегать явлений трения и удара тел. Пуассону аналитическая механика обязана и переходом от понятия обобщенных скоростей