Механика от античности до наших дней
Механика от античности до наших дней читать книгу онлайн
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«Золотое правило» механики было известно древним. У них оно формулировалось применительно к времени или скоростям движения, например у Герона: каково отношение одной силы к другой, таково обратное отношение одного времени к другому. Этот принцип был сформулирован им в отношении колес, блоков и рычага.
Применительно к явлениям равновесия, т. е. в области статики, этот принцип соответствовал, следовательно до некоторой степени позднейшему принципу виртуальных (или возможных) скоростей.
Известно, что в средневековых трактатах по механике выделяются два направления: одни авторы шли по направлению, намеченному в «Механических проблемах» псевдо-Аристотеля, и сравнивали «виртуальные скорости» (например, перемещения обоих концов рычага); другие рассматривали «виртуальные перемещения», т. е. вертикальные линии подъема и опускания.
По первому пути пошел позднее Галилей, сформулировав принцип статики в прямом соответствии с принципом «Механических проблем».
Принцип сохранения работы Декарт (1596—1650) формулировал в небольшом трактате о простых машинах, приложенном к письму К. Гюйгенсу (отцу Христиана) от 5 октября 1637 г., а в следующем году изложил его почти в тех же словах в письме Мерсенну от 13 июля:
«Изобретение всех простых машин основано на одном-единственном принципе, который гласит: та же сила, которая способна поднять груз, скажем, в 100 фунтов на высоту 2 футов, способна также поднять 200 фунтов на высоту 1 фута, или 400 фунтов на высоту 1/2 фута и т. д., если она будет приложена к этому грузу».
Мерсенну он писал о том же в следующих словах, называя этот принцип «основой всей статики»: «Не требуется ни больше, ни меньше силы для того, чтобы поднять тяжелое тело на определенную высоту, и для того, чтобы поднять другое, менее тяжелое, тело на высоту, тем большую, чем менее оно тяжело, или для того, чтобы поднять более тяжелое на высоту, во столько же раз меньшую. Так, например, если сила способна поднять груз в 100 фунтов на высоту 2 фута, она способна также поднять груз в 200 фунтов на высоту 1 фут, или 50 фунтов на высоту 4 фута и т. д., если она будет приложена к этому грузу» {91}.
В обоих случаях (в трактате и в письме, к Мерсенну) Декарт связывал этот принцип с положением, что всякий результат, или эффект, должен всегда быть равен действию, которое его производит.
Самый принцип Декарт считал аксиоматическим: «Он настолько ясен сам по себе, что не нуждается ни в каком доказательстве». Почему же он все-таки способен породить возражения и недоумения? Во-первых, полагал Декарт, люди стали «слишком ученые в механике» и развил в себе придирчивость к принципам, высказываемым другими; впрочем, эти принципы, надо признаться, действительно зачастую оказываются неверными. Во-вторых, полагают возможным доказывать без этого принципа вещи, которые Декарт доказывает при его помощи, например принцип блока. Могло, наконец, ввести в заблуждение и то, что Декарт привел ряд примеров — иллюстраций, способных создать ложное впечатление, будто он стремился доказать свой принцип. Следует добавить: одним из источников споров и недоразумений могло явиться то, что Декарт воспользовался таким неопределенным понятием, как сила, употребив его в новом смысле, расходившемся с повседневным и традиционным. Не мудрено, что ему пришлось объяснить это Мерсенну.
Термин «сила» означает у Декарта не способность производить те или иные действия (в смысле потенции), а действительно реализуемую энергию, или работу.
Работа, которую Декарт называет силой, зависит от двух переменных: от того, что мы теперь называем силой, и от проекции пройденного пути на направление силы. Эти переменные можно рассматривать как прямолинейные координаты, и тогда работа, производимая постоянной силой, будет изображаться посредством прямоугольника. Сам Декарт в письме к Мерсенну воспользовался подобной графической схемой. В этом смысле Декарт говорил, что сила, служащая для подъема груза на какую-либо высоту, имеет всегда два измерения, тогда как сила, служащая для поддержания груза, имеет всего лишь одно измерение, и, таким образом, «обе эти силы отличаются друг от друга настолько же, насколько поверхность отличается от линии».
По примеру Декарта Паскаль (1623—1662) исходит не из принципа возможных скоростей, а из принципа возможных перемещений. Во всех простых машинах — рычаге, блоке, бесконечном винте — «путь увеличивается в той же пропорции, как и сила». В гидростатике же «совершенно безразлично, заставить ли 100 фунтов воды пройти путь в один дюйм или один фунт воды — путь в 100 дюймов» {92}.
В те же годы тем же принципом пользовался Роберваль (1602—1675) в своем трактате по механике.
Французский математик, физик и философ. Изобрел суммирующую машину. Открыл один из основных гидростатических законов, носящий его имя. На законе Паскаля основан гидравлический пресс и другие гидростатические машины
Прошло, однако, более сорока лет, прежде чем Иоганн Бернулли (1667—1748) сформулировал принципы возможных перемещений в общей форме. Это было сделано им в письме к Вариньону из Базеля, датированном 26 января 1717 г. Вариньон включил его в свою книгу «Новая механика». Заметим, что Бернулли называл возможным перемещения возможными (или виртуальными) скоростями; из текста письма с полной очевидностью явствует, что, говоря «скорость», он подразумевал соответствующий отрезок пути.
Если рассматривать механику XVII в. со стороны ее воздействия на науку в целом, то особенно большое значение приобретает развитие идеи сохранения энергии. Действительно, понятие энергии позволило перенести то, что было создано в механике, в более общую область. При этом принципы механики и расширили и сузили область своего применения. Оказалось (значительно позже рассматриваемого периода), что эти принципы не могут быть применены в физике без существенной модификации, что физика не сводима к механике. Но в модифицированной форме принципы механики оказались чрезвычайно важными для физики. Понятие энергии выросло в механике, но стало оно фундаментальным понятием физики. Наряду с картезианской мерой движения в XVII в. появилась мера движения, которую Лейбниц назвал живой силой. Мы вернемся к этим вопросам ниже, здесь лишь отметим, что наряду с термином «живая сила» в XVII в. уже говорили и об энергии — это слово встречалось у Аристотеля. О сохранении живых сил говорил и Иоганн Бернулли. Он считал такое сохранение самым универсальным законом механики. Его также рассматривал Л. Эйлер, который связал живую силу с работой, измеряя приращение живой силы произведением силы на пройденный путь. Сам термин «работа» в этом смысле стал употребляться только в XIX в. Тогда же (в начале XIX в.) Т. Юнг (1773—1829) начал называть лейбницеву меру движения энергией движущегося тела. В дискуссиях о мерах движения участвовал и Даламбер, который высказал новые для того времени идеи о различной природе двух мер движения и об их применении в различных случаях.
ОСНОВНЫЕ ИДЕИ МЕХАНИКИ ДЕКАРТА
Мы видели, что принцип сохранения работы имел для Декарта характер аксиомы. Такой же характер имел для него принцип постоянства количества движения. В своих «Началах философии» Декарт в сущности не обосновывал его ничем, кроме ссылки на неизменность божественной воли.
Немного подробнее Декарт говорил о принципе сохранения количества движения за несколько лет до издания «Начал философии» в письме к де Бону от 30 апреля 1639 г. Он писал здесь так:
«Я утверждаю, что существует известное количество движения во всей сотворенной материи, которое никогда не возрастает и не убывает. Таким образом, когда одно тело приводит в движение другое, оно столько же теряет в своем движении, сколько отдает. Например, если камень падает с высокого места на Землю, я мыслю, что такая потеря происходит от того, что камень приводит в сотрясение Землю и передает ей тем самым свое движение; но если приводимая в движение Земля содержит в 1000 раз больше материи, чем камень, последний, передавая ей свое движение, сообщает ей лишь 1/1000 своей скорости».