Механика от античности до наших дней
Механика от античности до наших дней читать книгу онлайн
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Идея непрерывного приращения скорости — это не только исходная идея динамики Галилея, но и исходная идея всей динамики XVII в., «Математических начал» Ньютона и динамики следующего столетия. Более того, это центральная идея классической науки в целом. В механике Аристотеля рассматривалась лишь интегральная схема «естественных мест» и «естественных» движений и «насильственных» движений. Но при этом движение не рассматривали от точки к точке и от мгновения к мгновению. Теперь дело изменилось. В науке появилось дифференциальное представление о движении, об изменении скорости в данной точке, об ускорении. Отсюда изучение проблем динамики с помощью анализа бесконечно малых.
Как уже говорилось, для динамики XVII в. характерно сочетание логико-математического выведения одного понятия из другого и эмпирического изучения мира. Последнее приобретает характер эксперимента, в котором исследуется, проверяется, устанавливается рационально постижимый механизм процесса. В свою очередь логико-математический путь проходит через экспериментально постигаемые понятия.
Такое сочетание выражается в появлении аксиом, которые говорят не о геометрических понятиях, образах и объектах, а о поведении движущихся тел. Это аксиомы механики. К ним ведет долгий путь от интуитивного не-аксиоматизированного положения, молчаливо полагаемого в основу тех или иных выводов, до четко формулированной, логически осознанной аксиомы.
В этом отношении наиболее интересен, пожалуй, принцип сохранения, к которому в разной форме на разных этапах подходили ученые XVII в., принцип инерции как принцип сохранения «состояния», принцип сохранения количества движения, живых сил и т. д.
ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ
Современный историк механики не случайно начинает свою общую характеристику развития механики в XVII в. со следующего положения: «От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через законы падения и движения брошенных тел в пустоте, законы удара, теорию колебаний маятника, гидростатику и тяжесть воздуха, сопротивление жидкостей и движение в сопротивляющейся среде — таков путь, пройденный механикой XVII века» {88}.
При доказательстве теоремы о равновесии на наклонной плоскости Стевин исходит из верного интуитивного принципа — невозможности вечного движения, возникновения движения из ничего. Мах называл этот еще неаксиоматизированный опыт инстинктивным познанием — определение вряд ли удачно, поскольку здесь налицо некое первичное обобщение повседневного практического опыта, презумпция здравого смысла, лежащая в основе деятельности каждого ремесленника. В этом отношении весьма показательны более ранние высказывания Леонардо да Винчи, проникнутые презрением к искателям вечного движения, а также взгляд Кардано, согласно которому для того, чтобы имело место вечное движение, нужно, чтобы передвигающиеся тяжелые тела, достигнув конца своего пути, могли вернуться в свое начальное положение, а это невозможно без наличия перевеса, как невозможно, чтобы в часах опустившаяся гиря поднималась сама.
Итальянский физик и математик, ученик Галилея. Известен открытием давления воздуха и возможности существования вакуума (торричеллиева пустота). Он открыл также закон истечения жидкости из сосуда — первый научно обоснованный закон гидродинамики
Как нечто само собой разумеющееся (хотя и не возведенное еще в ранг аксиомы) фигурирует тот же принцип у Галилея, ссылающегося на него мимоходом, в ходе аргументации. В его фундаментальном труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки», сказано: «Если невозможно, чтобы тяжелое тело или соединение таковых поднялось само по себе вверх, удаляясь от общего центра, к которому стремятся все тяжелые тела, то одинаково невозможно, чтобы оно само по себе стало двигаться, если его собственный центр тяжести не приближается при этом к общему центру».
В 1644 г. ученик Галилея Торричелли (1608—1647) опубликовал труд «О движении естественно падающих и брошенных тел», в котором исходил из следующего принципа, игравшего у него роль аксиомы: «Два груза, соединенные вместе, не могут двигаться сами без того, чтобы их общий центр тяжести не опускался. В самом деле, когда два груза связаны друг с другом так, что движение одного влечет за собой движение другого, — безразлично, получается ли такая связь посредством весов, блока или другого механизма, — оба будут вести себя словно один груз, состоящий из двух частей; но такой груз никогда не придет в движение без того, чтобы его центр тяжести не опускался. Стало быть, если груз расположен так, что его центр тяжести никак не может опускаться, он наверняка пребудет в покое в том положении, которое он занимает».
Из этой аксиомы Торричелли выводит закон равновесия на наклонной плоскости: «Если два груза расположены на двух плоскостях разного наклона, но одинаковой высоты, и если веса этих грузов стоят друг к другу в том же отношении, что и длины этих плоскостей, момент обоих грузов будет одинаковый». «В самом деле, мы покажем, — продолжает Торричелли, — что их общий центр не может опускаться, ибо, какое бы движение ни было придано обоим грузам, этот центр всегда находится на той же горизонтальной линии… Таким образом, два груза, связанные вместе, двигались бы, а их общий центр тяжести не опускался бы. Это было бы противно закону равновесия, выдвинутому нами в качестве принципа».
В несколько иной формулировке Торричелли дал тот же закон равновесия в другом своем сочинении «Об изменении параболы». Он исходил здесь из следующего предположения, служившего одновременно определением понятия центра тяжести. Природа центра тяжести, говорит Торричелли, такова, что «тело, свободно подвешенное в одной из своих точек, не сможет пребывать в покое, если центр тяжести не находится в самой низкой точке сферы, по которой оно движется». Отсюда Торричелли выводит, что в момент равновесия центр тяжести находится на вертикали точки подвеса и ниже этой точки {89}.
Гюйгенс (1629—1695) обобщил аксиому Торричелли на случай движения. В сочинении «Маятниковые часы» (1673) он выдвинул в качестве своего исходного предположения тезис, согласно которому при движении некоторого числа тяжелых тел под действием тяжести общий центр тяжести этих тел не может подняться выше, чем он был в начале движения. Эта гипотеза, по словам Гюйгенса, не означает ничего другого, чем то, что никем не оспаривалось, а именно, что весомые тела не движутся наверх. В отношении одного тяжелого тела нет никакого сомнения, что оно не может двигаться наверх, т. е. центр его тяжести не перемещается кверху. «Однако то же самое должно произойти, если мы будем иметь произвольное число весомых тел, соединенных негнущимися связями, так как ничто не мешает рассматривать их как одно тело. Следовательно, не будет подыматься и их общий центр тяжести». «Если теперь представить себе произвольное число тяжелых тел, не связанных между собой, то мы знаем, что и они имеют общий центр тяжести… Точно так же, как весомые тела, находящиеся в одной горизонтальной плоскости, не могут под влиянием тяжести все подняться выше этой плоскости, так же мало возможно, чтобы центр тяжести каких-либо тел, как бы они ни были расположены, поднялся до большей высоты, чем та, на которой он сейчас находится» {90}.
Свою гипотезу Гюйгенс считал возможным применить к жидкостям и вывести из нее теоремы Архимеда о плавании тел и многие другие теоремы механики. Гипотеза исключает идею вечного двигателя.
Исходя из принципа невозможности вечного двигателя, Стевин в «Прибавлении» к той же «Статике» формулировал применительно к равновесию системы блоков следующее положение: «Путь, проходимый грузом, относится к пути, проходимому грузом, испытывающим воздействие так, как сила этого последнего относится к силе первого».