Проклятые вопросы
Проклятые вопросы читать книгу онлайн
В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?
В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.
А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.
В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных. О какой бы области науки ни велась речь, основное внимание сосредоточено на героическом, напряжённом труде физиков, математиков, астрономов, космологов, астрофизиков, труде, который во все времена служил фундаментом прогресса человечества, основой цивилизации, источником наших знаний об окружающем мире, инструментом дальнейшего совершенствования человеческого разума.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Б. Я. Зельдович и его сотрудники использовали важную особенность вынужденного рассеяния Мандельштама — Бриллюэна. Складываясь с первоначальным лазерным излучением, распространяющимся в глубь оптически нелинейного вещества, свет, возникающий в результате вынужденного рассеяния, формирует в этом веществе области со значительными перепадами коэффициента преломления. Такие перепады, подобно зеркалу, отражают падающий на них свет. По распределению в пространстве эти области, эти «зеркала», совпадают с фронтами волн первоначального лазерного излучения.
Так, проникая в вещество, показатель преломления которого сильно зависит от интенсивности лазерного излучения, это излучение порождает в веществе «зеркала». Их форма такова, что первоначальное лазерное излучение отражается и распространяется назад точно по тем же направлениям, по которым оно вошло в вещество. Это и есть обращение волнового фронта. И это явление подсказало прозорливым исследователям способ, каким можно избавиться от искажений лазерного луча!
Давайте рассуждать вместе с учёными. Итак, волна, повернув назад, проходит через лазер-усилитель точно по тому пути, по которому она прошла первоначально. При этом она вновь испытает искажения из-за неоднородности вещества лазера-усилителя. Эти искажения точно равны по величине, но обратны по знаку искажениям, испытанным ею при первом прохождении через усилитель. В результате из усилителя выйдет дважды усиленное излучение, полностью свободное от искажений. Его оптическое качество не ухудшено по сравнению с излучением маломощного лазера-генератора!
Впоследствии было установлено, что не только вынужденное рассеяние Мандельштама — Бриллюэна, но и другие процессы вызывают самовоздействие лазерного излучения в веществах, показатель преломления которых зависит от интенсивности лазерного излучения.
Академия наук СССР, учтя заслуги Б. Я. Зельдовича в исследовании и применении явления самообращения волнового фронта лазерного излучения, избрала его своим членом-корреспондентом.
Рассмотрим два случая использования явления самообращения волнового фронта.
Первый из них относится к попытке применить мощные лидеры для получения термоядерной энергии.
Мы знаем, что в таком реакторе маленькая мишень, содержащая тяжёлые изотопы водорода, маленькая водородная «льдинка», должна со всех сторон освещаться мощным лазерным излучением. Мощность его должна быть столь большой, чтобы быстро и сильно сжать мишень, одновременно нагревая её до сотен миллионов градусов. При этом водородная мишень превратится в гелий, что сопровождается значительным выделением энергии. Эта энергия и будет передаваться потребителю.
Можно представить себе, сколь сложно сосредоточить энергию многих лазеров на мишень, движущуюся внутри рабочей камеры установки. Сосредоточить так, чтобы мишень освещалась одновременно и равномерно со всех направлений. Здесь приходится решать две задачи: обеспечение одновременности генерации и «прицеливание» независимых лазеров-генераторов на мишень.
Применение обращения волнового фронта радикально упрощает обе задачи. Для этого мощные лазеры-генераторы заменяют ещё более мощными лазерами-усилителями, а мишень освещают излучением вспомогательного лазера. Мишень рассеивает его излучение. Рассеянное излучение попадает на лазеры-усилители и проходит сквозь них, приобретая большую дополнительную энергию. Позади каждого из них расположено устройство, обращающее волновой фронт излучения, заставляя его второй раз пройти через усилитель. Так как излучение с обращённым волновым фронтом точно повторяет (но в обратном направлении) путь излучения, прошедшего через усилитель, то оно неизбежно попадает на мишень. При этом становятся ненужными устройства для «прицеливания». Ненужными, несмотря на то, что мишень выстреливается в рабочую камеру реактора и движется в ней под действием силы тяжести.
Для того чтобы отпала необходимость прицеливания вспомогательного лазера на летящую льдинку, его пучок расширяют при помощи оптических линз так, что он освещает всю среднюю часть камеры. «Прицеливание» усилите лей не нужно потому, что их излучение в результате обращения волнового фронта вернётся в ту точку, где находилась мишень, когда её осветил пучок излучения вспомогательного лазера. Ведь скорость света столь велика по сравнению со скоростью движения мишени, что мишень не успевает сместиться за время, нужное свету, рассеянному ею, для прохождения от мишени сквозь усилитель и обратно.
Явление обращения волнового фронта использовано при разработке некоторых вариантов лазерного оружия звёздных войн.
Путём небольшого видоизменения эту систему можно применить для поражения космических объектов, например спутников связи и других сугубо мирных объектов и, конечно, для разрушения ядерных ракет. Для этого система убийца помимо маломощного лазера, излучение которого усиливается мощным наземным лазером, должна быть снабжена большим зеркалом, направляющим усиленный пучок лазерного излучения на цель.
Мы знаем лазер на искусственном рубине, на искусно подобранной смеси газов. Оказалось, что это не единственные вещества, которые могут зажечь лазерный свет.
Теперь мы познакомимся ещё с одним типом лазера. Рабочим веществом в нём служит стекло. Стекло — твёрдое тело, но по своему строению оно мало отличается от очень вязкой жидкости, например смолы. Разница между ними много меньше, чем различие стекла и кристалла.
В большинстве кристаллов образующие их ионы располагаются регулярно так, что их взаимное расположение многократно повторяется подобно рисунку на обоях. Конечно, это не полная аналогия, ибо рисунок повторяется на плоскости, а расположение ионов — в пространстве.
В стёклах упорядоченность может быть обнаружена только в расположении ближайших соседей. Дальше царствует хаос. Именно это и роднит стекло с жидкостями. Различие между ними лишь в величине вязкости. Она столь велика, а текучесть стекла столь мала, что по механическим свойствам оно близко к хрупким твёрдым телам.
Имеется ещё один признак отличия. Кристаллы плавятся, превращаясь в жидкость при вполне определённой для каждого вида температуре. Физики называют такое их превращение фазовым переходом. Кристаллическая фаза, говорят они, переходит в жидкую фазу при постоянной температуре. Так, лёд превращается в воду при 0 °C и в обычных условиях не может оставаться льдом при более высокой температуре.
Стекло же не знает такого перехода. При медленном нагревании его вязкость постепенно уменьшается до тех пор, пока не станет столь малой, что стекло превратится в жидкость. Изменение температуры во время такого перехода может достигать сотен градусов.
Стекло изредка встречается в природе. Это сплав окислов различных металлов, возникающих при извержении вулканов. Иногда капли стекла образуются при попадании молнии в песчаную почву. Стекло, применяемое людьми, изготавливается искусственно. Для этого в специальных печах расплавляют специально подобранные смеси окислов, тщательно перемешивают расплав и медленно остужают. Мастера на опыте определили составы смесей, позволяющих получать прозрачные бесцветные или окрашенные стекла.
Большая часть применяемых стёкол содержит в качестве основной части двуокись кремния. Такие стёкла называют силикатными.
Создатель первого лазера, работающего на стекле, американский учёный Е. Снитцер, изготовил для своего лазера особое стекло, добавив в исходный состав окись неодима, одного из редкоземельных элементов. Ионы неодима придали стеклу нежный сиреневый цвет. Снитцер изготовил из него круглый стержень, торцы которого были тщательно отполированы и посеребрены. Его генерация возбуждалась вспышками.
Лазерное излучение, порождаемое ионами неодима, лежит за пределами видимого спектра в начале его инфракрасной части. Многовековое совершенствование технологии производства стекла позволило изготавливать из него большие, весьма однородные блоки, предназначавшиеся для объективов крупных телескопов.