Проклятые вопросы
Проклятые вопросы читать книгу онлайн
В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?
В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.
А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.
В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных. О какой бы области науки ни велась речь, основное внимание сосредоточено на героическом, напряжённом труде физиков, математиков, астрономов, космологов, астрофизиков, труде, который во все времена служил фундаментом прогресса человечества, основой цивилизации, источником наших знаний об окружающем мире, инструментом дальнейшего совершенствования человеческого разума.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если же стенки кастрюльки деформированы, то после первого прохода волны перестанут быть круговыми, и вскоре поверхность воды окажется покрытой хаотической рябью. Теперь снятый кинофильм утратит обратимость: просматривая его в одном направлении, мы увидим, что рябь становится всё более хаотичной, а при противоположном направлении хаос будет упрощаться и картина будет всё более регулярной. Не приводит ли в данном случае нерегулярная деформация стенки к необратимости процесса во времени? Это важный вопрос, но оставим его на дальнейшее.
Подобная рябь возникнет и в том случае, когда стенки кастрюльки идеально круглые, но на её дне имеются бугры и впадины, а слой воды так тонок, что наиболее высокие бугры едва покрыты водой. Даже если камешек падает точно в центре, круги будут деформированы уже при первом проходе. Так действует зависимость скорости распространения волны от глубины воды. При следующих проходах отличие фронта волны от круговой симметрии будет всё более возрастать.
Заметив это, естественно приходишь к вопросу: можно ли сделать так, чтобы и в кастрюльке с деформированным дном волны собирались в её центре?
Этот вопрос наверное не возник бы или оказался забытым, если бы речь шла только о волнах в кастрюльке.
Иное дело, когда речь идёт о световых волнах, особенно о волнах, испускаемых лазером.
Излучение лазера обладает большой упорядоченностью. Особенно упорядочены лучи газовых лазеров. Причина — высокая однородность газов по сравнению с твёрдым телом, например со стеклом или кристаллом. Чем однороднее рабочее вещество лазера, тем меньше расходится световой пучок, тем меньше разброс длин волн, излучаемых лазером. Тем легче собрать излучение лазера в маленькое пятнышко. А это бывает необходимо во многих случаях применения лазеров. Тем меньше ослабевает интенсивность лазерного излучения с увеличением расстояния. Это особенно важно при применении лазерных маяков в навигации или лазерных нивелиров в геодезии и при строительных работах.
Физиков давно преследовало желание совместить в одном приборе два качественных преимущества разных лазеров: способность стеклянных лазеров к генерации световых пучков, обладающих большой энергией, с малой расходимостью пучков, присущей газовым лазерам.
Уже первые оценки показали, что главным препятствием здесь являются неоднородности оптических свойств среды, в которой распространяются лучи лазера. Таковы неоднородности показателя преломления атмосферы, вызывающие отклонения лучей света от прямой линии и искажение фронта световых волн.
Конструкторы много работают над тем, чтобы повысить энергию, излучаемую компактными твердотельными лазерами, без ухудшения «качества» их излучения. Почему это так важно?
Энергия излучения лазера непосредственно связана с объёмом вещества, охваченного процессом генерации этого излучения. Но чисто технологические причины приводят к тому, что величина внутренних неоднородностей в лазерном веществе увеличивается с ростом его объёма. Увеличение внутренних неоднородностей в свою очередь приводит к ухудшению «качества» лазерного излучения. Излучение, выходящее из лазера, становится более неоднородным по сечению светового пучка. Пучок быстрее расширяется по мере удаления от лазера. А спектр излучения становится более широким (в нём присутствует большее число световых волн, различающихся своей длиной).
Казалось, этого можно избежать при помощи лазера, содержащего очень малый объём активного лазерного вещества. Ведь его несложно сделать однородным, а значит, «качество» генерируемого излучения станет высоким. Затем, конечно, нужно пропустить излучение этого лазера-генератора через мощный лазер — усилитель. Но надежда на то, что таким путём можно получить высококачественное мощное лазерное излучение, эфемерна. Ведь мощный лазер-усилитель должен содержать большой объём активного лазерного вещества. А это неизбежно приводит к увеличению неоднородности усиленного лазерного пучка.
Можно ли преодолеть эту трудность? Как добиться того, чтобы (несмотря на неизбежные неоднородности материала, работающего в лазере-усилителе) свойства усиленного излучения были бы не хуже свойств излучения, подлежащего усилению?
Ответ на эти вопросы подсказывают мысленные опыты с кастрюлькой, проведённые нами выше. Нужно заставить свет, прошедший через неоднородную среду, возвратиться обратно точно по тому пути, по которому он распространялся первый раз! Тогда все искажения, возникшие при первом прохождении, повторятся на обратном пути, но с обратным знаком. А значит, в итоге все искажения взаимно уничтожатся!
Выполнить этот простой рецепт весьма непросто. Даже в случае волн в кастрюльке с деформированным дном. Здесь рецепт звучит так: деформируйте стенки кастрюльки таким образом, чтобы при первом пробеге фронт волны коснулся её деформированных стенок повсюду одновременно. Благодаря тому что фронт волны на поверхности воды хорошо виден, это требование, хотя бы в принципе, выполнимо.
Иное дело — фронт световой волны. Сделать его видимым — сложная задача. Она может быть решена, например при помощи голографии. При помощи голографии можно достичь и главной цели — повернуть световую волну в обратном направлении так, чтобы в месте поворота фронт волны, бегущей обратно, точно совпал с фронтом приходящей волны.
Но группа учёных Физического института РАН достигла этой цели другим путём, более простым, чем голография. Они заставили саму исходную световую волну сформировать своеобразное «зеркало», отражение от которого заставляет отражённую волну вернуться обратно, повторяя во всех деталях путь волны, идущей в первоначальном направлении. Они назвали этот процесс самообращением волнового фронта.
Возможность самообращения реализуется только для очень мощного излучения, когда законы обычной оптики уступают место законам нелинейной оптики, появление которой предсказал С. И. Вавилов.
Б. Я. Зельдович (сын учёного, которого знает весь научный мир, академика Я. Б. Зельдовича) и его сотрудники решили привлечь к выполнению этой задачи процесс, называемый вынужденным рассеянием Мандельштама — Бриллюэна. Напомним, что на рубеже двадцатых годов нашего века советский учёный Л. И. Мандельштам и французский учёный Л. Бриллюэн независимо друг от друга предсказали, что неоднородности плотности вещества, порождаемые хаотическим тепловым движением молекул, приводят к столь же хаотическим изменениям показателя преломления, а следовательно, к рассеянию света, проходящего через это вещество. Такое рассеяние было позднее обнаружено Мандельштамом и Г. С. Ландсбергом и подробно изучено Е. Ф. Гроссом.
Создание мощных лазеров внесло существенное изменение в процесс этого рассеяния. Свет от самых мощных нелазерных источников практически не влияет на свойства вещества, через которое он распространяется. Мощный лазерный свет, напротив, изменяет оптические свойства прозрачных тел. В частности, он приводит к значительным изменениям показателя преломления вещества. Это в свою очередь влияет на распространение света в веществе, сквозь которое проходят лучи мощного лазера. При этом вместе с мощностью лазерного пучка изменяется и процесс его распространения в веществе. Возникает самовоздействие лазерного излучения. Существует ряд веществ, свойства которых особенно сильно изменяются под действием мощного лазерного излучения. Учёные называют их нелинейными средами, имея в виду, что в них особенно заметны законы нелинейной оптики.
Если исходная лазерная волна обладает пространственной неоднородностью, например в результате прохождения через неоднородное вещество лазера-усилителя, то интенсивность этой волны сильно изменяется в пространстве. Когда такая неоднородная волна проникает в нелинейное вещество, она вызывает в нём сильные изменения показателя преломления. Эти изменения в свою очередь влияют на распространение лазерного излучения. При этом сильно увеличивается его рассеяние.
Для того чтобы подчеркнуть особенности такого процесса, физики называют его вынужденным рассеянием, имея в виду, что оно много больше, чем рассеяние нелазерного света, и что оно является одним из проявлений самовоздействия мощных лазерных пучков.