Квантовая хромодинамика: Введение в теорию кварков и глюонов
Квантовая хромодинамика: Введение в теорию кварков и глюонов читать книгу онлайн
Книга испанского физика Ф. Индурайна представляет собой курс современной теории сильных взаимодействий — квантовой хромодинамики. Она содержит практически весь основной материал, необходимый для ознакомления с важнейшими результатами, полученными в рамках пертурбативной КХД, и овладения вычислительными методами теории. Материал изложен с приведением всех промежуточных выкладок и с большим педагогическим мастерством, что позволяет использовать книгу в качестве учебного или справочного пособия. Книга предназначена для научных работников, студентов и аспирантов физических факультетов, специализирующихся в области физики элементарных частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
∫
d
4
k e
-ik⋅x
1
k2+i0
=
1
(2π)2
⋅
1
x2+i0
.
В пределе x→y оператор :φ(x)φ(y): и, конечно, единичный оператор 1 являются регулярными величинами.
В общем случае произведение локальных (элементарных или составных) операторов A и B, взятых в точках x и y , разделенных малым интервалом, можно записать в виде вильсоновского разложения
TA(x)B(y)=
∑
t
C
t
(x-y)N
t
(x,y)
,
(18.1)
где вильсоновские коэффициенты Ct в общем случае представляют собой сингулярные c-числовые функции разности x-y, a Nt(x,у) - билокальные операторы, регулярные в пределе x→y. Последние обозначены буквой N, чтобы подчеркнуть, что они являются составными нормально упорядоченными операторами. Разложение вида (18.1) является не чем иным, так обобщением разложения в случае свободных полей. Запишем T-произведение двух операторов А(х) и B(х) в виде
TA(x)B(y)=
∑
i n
n!
∫
d
z
1
…
d
z
n
TA
0
(x)B
0
(y)ℒ
0
int
(z
1
)…ℒ
(z
n
) .
Здесь индекс 0 означает, что соответствующие величины строятся из свободных полевых функций. Применяя к этому выражению теорему Вика, приходим к разложению (18.1). Но необходимость записи приведенного выражения в общем виде возникает довольно редко. Если нас интересует поведение произведения операторов в пределе x→y, то можно прибегнуть к более простому способу. А именно достаточно рассмотреть базис, образованный всеми операторами, обладающими теми же квантовыми числами и трансформационными свойствами, что и исходное произведение AB (в частности, если операторы A и B скалярные и калибровочно-инвариантные, то при построении базиса дрлжны быть рассмотрены только скалярные и калибровочноинвариантные операторы). В этом случае имеем операторы
1,
:
q
(x)q(y):,
:
q
(x)
D
q(y):,…,
:(
q
(x)q(y))
2
:,…,
:G(x)G(y):,…
(18.2)
т.е. бесконечную последовательность операторов. Но в пределе x→y требуются только некоторые из них (иногда для выяснения лидирующего поведения достаточно одного). Это можно показать следующим образом. Пусть размерность оператора N равна pN; тогда среди операторов (18.2) низшей размерностью обладают операторы
1(p
1
=0),
:
q
q:(p
=3),
:
q
D
q:(p
qDq
=4),
и
:G
2
:(p
G2
=4).
Если предположить, что размерность каждого из операторов A и B равна 3, то простой подсчет размерностей позволяет заключить, что размерность вильсоновского коэффициента C1 равна 6, коэффициент Cqq имеет размерность 3, а размерность коэффициентов CqDq и CG2 равна 2. Следовательно, явно выделяя массу из коэффициента Cqq , получаем
C
1
(x-y)≈(x-y)
-6
,
C
(x-y)≈m(x-y)
-2
,
C
qDq
(x-y)≈(x-y)
-2
,
C
G2
(x-y)≈(x-y)
-2
,
(18.3)
где х6 означает (х⋅х)3, х-2 означает 1/х2 и т.д. Очевидно, что эти соотношения точно выполняются лишь в случае свободных полей. Асимптотическая свобода КХД гарантирует, что поправки к соотношениям (18.3) могут быть только логарифмическими. Эти поправки не вносят существенных изменений во все проводимые рассуждения.
Коэффициенты при других операторах в пределе x→0 оказываются конечными. Если теперь взять какой-нибудь матричный элемент от разложения (18.1):
⟨Φ|TA(x)B(0)|Ψ⟩
=
x→0
C
1
(x)⟨Φ|Ψ⟩+
C
(x)
⟨Φ|:
q
(0)q(0):|Ψ⟩
+
C
qDq
(x)
⟨Φ|:
q
(0)
D
q(0):|Ψ⟩
+
C
G2
(x)
⟨Φ|:G
2
(0):|Ψ⟩+…
(18.4)
то из регулярности операторов Nt следует, что в пределе x→0 поведение левой части (18.4) определяется вильсоновскими коэффициентами, умноженными на конечные константы ⟨Φ|Nt|Ψ⟩. Таким образом, в пределе x→0 лидирующее поведение хронологического произведения операторов TA(x)B(0) определяется коэффициентом C1(x), а старшие поправки контролируются коэффициентами Cqq, CqDq и CG2 .
Вернемся к разложению (18.1). Так как операторы Nt(x,y) регулярны, их можно разложить по степеням разности x-y. При у = 0 получаем
N
t
(x,0)=
∑
n
x
μ1
…x
μn
N
(n)μ1…μn
t
(0,0) .
Например, для полей q(x) и q(x) имеем
:
q
(0)q(-x):=
∑
n
x
μ1
…x
μn
(-1)n
n!
:
q
(0)∂
μ1
…∂
μn
q(0):.
(18.5)
В случае калибровочной теории, такой как КХД, обычные производные, фигурирующие в (18.5), следует заменить ковариантными производными29а). Тогда получаем
29а) Интуитивно это ясно. Формальное доказательство можно получить, заметив, что оператор q(0)q(-1) не является калибровочно-инвариантным. Калибровочная инвариантность восстанавливается при введении экспоненциального множителя P exp∫0-1dyμ∑taBμa . См. , например, работу [269] и приложение И.
TA(x)B(0)
≃
x→0
C
1
(x)1+C
(x)
∑
n
x
μ1
…x
μn
(-1)n
n!
×
:
q
(0)D
μ1