Квантовая хромодинамика: Введение в теорию кварков и глюонов

На нашем литературном портале можно бесплатно читать книгу Квантовая хромодинамика: Введение в теорию кварков и глюонов, Индурайн Франсиско Хосе-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Квантовая хромодинамика: Введение в теорию кварков и глюонов
Название: Квантовая хромодинамика: Введение в теорию кварков и глюонов
Дата добавления: 16 январь 2020
Количество просмотров: 249
Читать онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов читать книгу онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов - читать бесплатно онлайн , автор Индурайн Франсиско Хосе

Книга испанского физика Ф. Индурайна представляет собой курс современной теории сильных взаимодействий — квантовой хромодинамики. Она содержит практически весь основной материал, необходимый для ознакомления с важнейшими результатами, полученными в рамках пертурбативной КХД, и овладения вычислительными методами теории. Материал изложен с приведением всех промежуточных выкладок и с большим педагогическим мастерством, что позволяет использовать книгу в качестве учебного или справочного пособия. Книга предназначена для научных работников, студентов и аспирантов физических факультетов, специализирующихся в области физики элементарных частиц.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 39 40 41 42 43 44 45 46 47 ... 122 ВПЕРЕД
Перейти на страницу:

d

4

k e

-ik⋅x

1

k2+i0

=

1

(2π)2

1

x2+i0

.

В пределе x→y оператор :φ(x)φ(y): и, конечно, единичный оператор 1 являются регулярными величинами.

В общем случае произведение локальных (элементарных или составных) операторов A и B, взятых в точках x и y , разделенных малым интервалом, можно записать в виде вильсоновского разложения

TA(x)B(y)=

 

t

C

t

(x-y)N

t

(x,y)

 

,

(18.1)

где вильсоновские коэффициенты Ct в общем случае представляют собой сингулярные c-числовые функции разности x-y, a Nt(x,у) - билокальные операторы, регулярные в пределе x→y. Последние обозначены буквой N, чтобы подчеркнуть, что они являются составными нормально упорядоченными операторами. Разложение вида (18.1) является не чем иным, так обобщением разложения в случае свободных полей. Запишем T-произведение двух операторов А(х) и B(х) в виде

TA(x)B(y)=

i n

n!

d

z

1

d

z

n

TA

0

(x)B

0

(y)ℒ

0

int

(z

1

)…ℒ

(z

n

) .

Здесь индекс 0 означает, что соответствующие величины строятся из свободных полевых функций. Применяя к этому выражению теорему Вика, приходим к разложению (18.1). Но необходимость записи приведенного выражения в общем виде возникает довольно редко. Если нас интересует поведение произведения операторов в пределе x→y, то можно прибегнуть к более простому способу. А именно достаточно рассмотреть базис, образованный всеми операторами, обладающими теми же квантовыми числами и трансформационными свойствами, что и исходное произведение AB (в частности, если операторы A и B скалярные и калибровочно-инвариантные, то при построении базиса дрлжны быть рассмотрены только скалярные и калибровочноинвариантные операторы). В этом случае имеем операторы

1,

:

q

(x)q(y):,

:

q

(x)

D

q(y):,…,

:(

q

(x)q(y))

2

:,…,

:G(x)G(y):,…

(18.2)

т.е. бесконечную последовательность операторов. Но в пределе x→y требуются только некоторые из них (иногда для выяснения лидирующего поведения достаточно одного). Это можно показать следующим образом. Пусть размерность оператора N равна pN; тогда среди операторов (18.2) низшей размерностью обладают операторы

1(p

1

=0),

:

q

q:(p

qq

=3),

:

q

D

q:(p

qDq

=4),

и

:G

2

:(p

G2

=4).

Если предположить, что размерность каждого из операторов A и B равна 3, то простой подсчет размерностей позволяет заключить, что размерность вильсоновского коэффициента C1 равна 6, коэффициент Cqq имеет размерность 3, а размерность коэффициентов CqDq и CG2 равна 2. Следовательно, явно выделяя массу из коэффициента Cqq , получаем

C

1

(x-y)≈(x-y)

-6

,

C

qq

(x-y)≈m(x-y)

-2

,

C

qDq

(x-y)≈(x-y)

-2

,

C

G2

(x-y)≈(x-y)

-2

,

(18.3)

где х6 означает (х⋅х)3, х-2 означает 1/х2 и т.д. Очевидно, что эти соотношения точно выполняются лишь в случае свободных полей. Асимптотическая свобода КХД гарантирует, что поправки к соотношениям (18.3) могут быть только логарифмическими. Эти поправки не вносят существенных изменений во все проводимые рассуждения.

Коэффициенты при других операторах в пределе x→0 оказываются конечными. Если теперь взять какой-нибудь матричный элемент от разложения (18.1):

⟨Φ|TA(x)B(0)|Ψ⟩

 

=

x→0

C

1

(x)⟨Φ|Ψ⟩+

C

qq

(x)

⟨Φ|:

q

(0)q(0):|Ψ⟩

+

C

qDq

(x)

⟨Φ|:

q

(0)

D

q(0):|Ψ⟩

+

C

G2

(x)

⟨Φ|:G

2

(0):|Ψ⟩+…

(18.4)

то из регулярности операторов Nt следует, что в пределе x→0 поведение левой части (18.4) определяется вильсоновскими коэффициентами, умноженными на конечные константы ⟨Φ|Nt|Ψ⟩. Таким образом, в пределе x→0 лидирующее поведение хронологического произведения операторов TA(x)B(0) определяется коэффициентом C1(x), а старшие поправки контролируются коэффициентами Cqq, CqDq и CG2 .

Вернемся к разложению (18.1). Так как операторы Nt(x,y) регулярны, их можно разложить по степеням разности x-y. При у = 0 получаем

N

t

(x,0)=

 

n

 

x

μ1

…x

μn

N

(n)μ1…μn

t

(0,0) .

Например, для полей q(x) и q(x) имеем

:

q

(0)q(-x):=

 

n

 

x

μ1

…x

μn

(-1)n

n!

:

q

(0)∂

μ1

…∂

μn

q(0):.

(18.5)

В случае калибровочной теории, такой как КХД, обычные производные, фигурирующие в (18.5), следует заменить ковариантными производными29а). Тогда получаем

29а) Интуитивно это ясно. Формальное доказательство можно получить, заметив, что оператор q(0)q(-1) не является калибровочно-инвариантным. Калибровочная инвариантность восстанавливается при введении экспоненциального множителя P exp∫0-1dyμtaBμa . См. , например, работу [269] и приложение И.

TA(x)B(0)

x→0

C

1

(x)1+C

qq

(x)

 

n

x

μ1

…x

μn

(-1)n

n!

×

:

q

(0)D

μ1

1 ... 39 40 41 42 43 44 45 46 47 ... 122 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название