-->

Живой кристалл

На нашем литературном портале можно бесплатно читать книгу Живой кристалл, Гегузин Яков Евсеевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Живой кристалл
Название: Живой кристалл
Дата добавления: 16 январь 2020
Количество просмотров: 290
Читать онлайн

Живой кристалл читать книгу онлайн

Живой кристалл - читать бесплатно онлайн , автор Гегузин Яков Евсеевич

Замечательный учёный и не менее талантливый популяризатор науки Яков Евсеевич Гегузин в этой брошюре сумел совместить невозможное - легко и просто объяснить что происходит в кристаллах - ярких представителях "твёрдой" формы окружающей нас материи, и как можно изменять их свойства, влиять на прочность и жёсткость, увеличивать полезные качества - и всё это в интересной форме, когда приводимые математические и физические формулы не отталкивают неискушённого читателя, а наоборот в доступной форме показывают всё величие человеческой мысли и научного подхода, и именно из этих исследований родился тот технический и электронный прогресс, плодами которого мы сейчас пользуемся (начиная от компьютеров и кончая сотовым телефоном, полностью "построенными" на технологии "выращивания" специальных кристаллов!) Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.

Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 32 33 34 35 36 37 38 39 40 ... 45 ВПЕРЕД
Перейти на страницу:

Границу между мозаичными блоками можно промоделировать методом БНЛ: неподалеку один от другого надо выдуть два небольших скопления из пузырьков, сделать их края ровными, а затем скопления приблизить до соприкосновения. Мы это делали. Изменили угол ориентации между скоплениями и увидели много интересного в строении границы между блоками.

Живой кристалл - _84.jpg

Мозаичные блоки и границы между ними — более чем полувековой объект исследований многих лабораторий мира. Добавим: важный объект, так как структура границы и размеры блока определяют очень многое в свойствах реальных кристаллов. А начало этих исследований восходит к тем работам, с рассказа о которых очерк начат.

ОПЫТЫ ПРОФЕССОРА ЛУКИРСКОГО

Опыты эти были поставлены в условиях, не располагавших к академическим исследованиям. 1944 г., война, большая комната Казанского университета шкафами условно разделена на несколько маленьких, в каждой из них — группа физиков Ленинградского физико-технического института, эвакуированного в Казань. В одной из импровизированных комнаток — сотрудники профессора Петра Ивановича Лукирского. Много дел связано с работой на оборону (ими и занят профессор со своими сотрудниками), и как дань естественной любознательности ищущего ученого — опыты с монокристаллами каменной соли. Эти опыты стали классикой кристаллофизики, о них и рассказ.

И по замыслу, и по осуществлению опыты, о которых я буду рассказывать, очень подобны и отличаются лишь формой изучавшегося образца. В одном из опытов длительному высокотемпературному отжигу подвергался тщательно отполированный цилиндр монокристалла каменной соли. Ось цилиндра была ориентирована параллельно ребру куба естественной огранки кристалла.

Живой кристалл - _85.jpg

Результат опыта: до отжига цилиндр бесшумно скатывался по слегка наклоненной поверхности стекла, а после отжига скатывание сопровождалось равномерным постукиванием, как если бы на поверхности цилиндра появились ребра — четыре ребра, равно отстоящих одно от другого. Эти ребра можно и увидеть, рассматривая отожженный цилиндр в отраженном свете.

В другом опыте такому же отжигу подвергалась тщательно отполированная монокристальная сфера. Результат опыта: при рассматривании отжигавшейся сферы в отраженном свете на ее поверхности можно отчетливо увидеть фигурные блики, соответствующие выходу осей симметрии второго (эллиптический блик!), третьего (треугольный блик!) и четвертого (квадратный блик!) порядка. (Некоторая прямая в кристалле называется осью симметрии k-го порядка, если при повороте кристалла вокруг этой прямой на угол 360°/k он совмещается с самим собой.) До отжига сфера рассматривалась тщательно, этих бликов не было.

Общий результат обоих опытов можно сформулировать так: кристаллы соли, которым принудительно придана не свойственная им цилиндрическая или сферическая форма, стремятся к восстановлению формы куба — своей естественной огранки. Кристаллографы говорят «естественного габитуса». Высокая температура в этих опытах нужна лишь для того, чтобы придать активность какому-нибудь механизму переноса вещества кристалла, необходимому для формирования «естественного габитуса». Кристаллы, разумеется, предпочтут тот из механизмов, который обеспечит им возможность поскорее избавиться от принудительно заданной формы. Живой кристалл как бы не желает уступать черты первородства и борется за них.

Стремление к естественной огранке обусловлено тем, что среди несметного числа прочих мыслимых она обеспечивает наименьшую поверхностную энергию кристалла яри данном его объеме. Потому она и «естественная». К этой естественной огранке обязывает термодинамика, которая применительно к задаче об огранении кристалла выступает в форме правила Кюри — Вульфа. Первая фраза абзаца передает основную идею этого правила, мудрого и красивого своей простотой.

Правило Кюри — Вульфа может показаться противоречащим не менее мудрому утверждению геометрии, согласно которому из всех тел данного объема минимальную поверхность имеет сфера, и поэтому, если сферический монокристалл стремится к уменьшению поверхностной энергии, ему, казалось бы, не следует ограняться, так как при этом его поверхность лишь увеличится! Поверхность действительно увеличится — геометрия права! А вот энергия уменьшится, потому что при огранении исчезают участки поверхности, которые имеют большую удельную поверхностную энергию, и развиваются участки поверхности, представленные в «естественном габитусе», которые имеют малую поверхностную энергию. Проигрывается поверхность, но выигрывается энергия!

Опыты Лукирского качественно проиллюстрировали основную тенденцию, которой следуют кристаллы, самопроизвольно преобразуя собственную поверхность, и вызвали множество иных опытов, в которых этот процесс изучался точно, количественно. Ставились, например, такие опыты. Тщательно полировалась плоскость произвольного сечения кристалла. Его поверхность в равновесной огранке кристалла не представлена, и поэтому при высокой температуре зеркальная гладкость, заданная принудительно, должна будет нарушаться так, чтобы появились выгодные грани кристалла. В зависимости от ориентации плоскости произвольного сечения кристалла на ней будут появляться различные элементы так называемой «естественной шероховатости».

На стене нашей лаборатории много лет висят две фотографии поверхности зерна кристалла меди. Одну фотографию называют «лестница петергофского фонтана». На ней отчетливо видны чередующиеся светлые и темные полосы, которые в совокупности действительно напоминают лестницу, по которой сплошным потоком течет вода. Поверхность этого зерна меди была тщательно отполирована, а после отжига оно стало шероховатым, превратилось в совокупность ступеней, ребра которых направлены так же, как и ребра в ограненном монокристалле меди. А другая фотография поверхности зерна меди называется «палаточный городок». На ней видна совокупность остроконечных трехгранных выступов, которые ограничены теми же плоскостями, что и равновесный монокристалл.

Почему кристалл, рассеченный по произвольной плоскости, подобно сфере в опыте Лукирского, не ограняется в целом, а допускает формирование «петергофской лестницы» и «палаточного городка»? Да просто потому, что и «лестница», и «городок» лишь этапы на пути к истинному равновесию, этапы, которые завершаются быстрее, при меньшем переносе массы, чем достижение истинно равновесной формы всего кристалла. И на поверхности образцов Лукирского можно было наблюдать промежуточные формы. Однако благодаря тому, что при высокой температуре у кристаллов каменной соли быстро осуществляется нужный перенос массы, в опытах Лукирского процесс стремления к равновесной форме зашел настолько далеко, что можно было на сфере наблюдать блики и при качении цилиндра слышать постукивание.

Опыты Лукирского — впечатляющий пример самопроизвольного преобразования дефекта (поверхность!), которое, как обычно, сопровождается выделением энергии. Потому и самопроизвольного!

Проблема формы поверхности, ограничивающей кристалл (именно ей и посвящены опыты Лукирского), привлекала и привлекает к себе внимание многих крупнейших ученых — экспериментаторов и теоретиков. Ею занимались и американец К. Герринг, и наши отечественные выдающиеся физики-теоретики Я. И. Френкель, И. М. Лифшиц. Л. Д. Ландау этой проблеме посвятил специальную статью, которую с благодарственными словами в адрес А. Ф. Иоффе поместил в сборнике, приуроченном к его семидесятилетию.

МОДЕЛЬ: ЛУННАЯ ДОРОЖКА

В этом очерке лунная дорожка — та, которую все видели на поверхности воды, — лишь удобная модель. А рассказывать я намерен о строении поверхности кристалла, о том, как она рассеивает свет, как на ней образуется световая дорожка, подобная той, какую мы видим на поверхности волнующейся воды в лунную ночь.

1 ... 32 33 34 35 36 37 38 39 40 ... 45 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название