-->

Живой кристалл

На нашем литературном портале можно бесплатно читать книгу Живой кристалл, Гегузин Яков Евсеевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Живой кристалл
Название: Живой кристалл
Дата добавления: 16 январь 2020
Количество просмотров: 290
Читать онлайн

Живой кристалл читать книгу онлайн

Живой кристалл - читать бесплатно онлайн , автор Гегузин Яков Евсеевич

Замечательный учёный и не менее талантливый популяризатор науки Яков Евсеевич Гегузин в этой брошюре сумел совместить невозможное - легко и просто объяснить что происходит в кристаллах - ярких представителях "твёрдой" формы окружающей нас материи, и как можно изменять их свойства, влиять на прочность и жёсткость, увеличивать полезные качества - и всё это в интересной форме, когда приводимые математические и физические формулы не отталкивают неискушённого читателя, а наоборот в доступной форме показывают всё величие человеческой мысли и научного подхода, и именно из этих исследований родился тот технический и электронный прогресс, плодами которого мы сейчас пользуемся (начиная от компьютеров и кончая сотовым телефоном, полностью "построенными" на технологии "выращивания" специальных кристаллов!) Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.

Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 29 30 31 32 33 34 35 36 37 ... 45 ВПЕРЕД
Перейти на страницу:

ЭФФЕКТ ИОФФЕ

Об эффекте, открытом и исследованном одним из патриархов советской физики академиком Абрамом Федоровичем Иоффе, я всегда с удовольствием рассказываю и во время университетских лекций, и просто в беседах с молодыми людьми, если хочу обратить их в свою веру — представить науку о кристаллах в красочном, привлекательном виде.

История открытия и самоутверждения эффекта Иоффе содержит все то, чем богата логика живой науки и маняща деятельность ученого. В этой истории и рождение проблемы, когда обнаруживается кричащее противоречие между идеями и фактами, и эксперимент — красивый и настолько простой, что у каждого возникает иллюзия сопричастности к замыслу эксперимента, уверенность, что и он придумал бы этот эксперимент, если бы ранее его не придумал и не осуществил тот, с чьим именем эксперимент вошел в науку. В истории эффекта Иоффе есть место деятельности и добросовестно заблуждающихся научных оппонентов, и активных газетных репортеров, неуемно и без достаточных оснований фантазирующих на тему «эффект и будущее» и высшая награда ученому, когда его идеи со страниц академических журналов перекочевывают на страницы учебников и в графы карточек цеховых технологических процессов.

Внешне эффект выглядит так. Оказывается, что, если кристалл каменной соли (толстый или тонкий — это безразлично) смочить водой, его прочность на разрыв становится во много раз больше прочности сухого кристалла. Казалось бы, прочность — объемное свойство кристалла и ему нет дела до всего того, что происходит на поверхности кристалла, а на поверку оказывается, что существует «эффект Иоффе»: соседство с водой резко упрочняет каменную соль.

Начало истории эффекта Иоффе мы будем датировать 1915 г., когда выдающимся немецким физиком-теоретиком Максом Борном была опубликована теория ионных кристаллов. Собственно, в этой теории впервые и было введено представление о кристаллах, состоящих из ионов, которые связаны электрическим взаимодействием. Сказанное в последней фразе для нас звучит азбучной истиной, а тогда, в 1915 г., всего через 3 года после того, как с помощью рентгеновских лучей впервые убедились в строгой периодичности чередования атомов в кристалле, мысль о структуре, состоящей из ионов, была откровением.

Теория Борна, математически стройная и внутренне непротиворечивая, подтверждалась многими экспериментами. Сопоставляя ее следствия с экспериментально установленными фактами, Борн объяснил оптические, электрические и многие другие свойства ионных структур. В противоречии с его теорией оказались лишь данные о прочности кристаллов. Известно было, что, например, кристалл каменной соли разрушается, если к нему приложить напряжение σ ≈ 4,5• 107 дин/см2, а точный и последовательный расчет теоретика предсказывал существенно иную величину: σ ≈ 2• 1010 дин/см2.

Сохранив идею, упростим расчет Борна и попытаемся примитивно оценить величину прочности кристалла. Борн ее вычислил строго.

Мы знаем, что прочность кристалла есть отношение силы, которую нужно приложить, чтобы его разорвать, к площади поверхности, по которой разрыв произошел:  σ = F/S

 

Живой кристалл - _76.jpg

Простота и очевидность сделанной оценки не должны в глазах читателя умалить проницательность теоретика. Нам, полвека спустя, легко и просто быть умеющими и понимающими, за нами величие Борна, который в 1915 г., не имея предшественников, мыслил независимо и революционно. Он был великим мастером. Здесь я хочу обратить внимание читателя на то, что в приведенном расчете, относящемся к разрыву кристалла, как и в расчете Френкеля, относившемся к сдвигу, делается все то же «классическое» предположение, что все связи рвутся одновременно.

Осмысливая противоречия между расчетом Борна и экспериментальными данными, Иоффе должен был обсуждать две возможности: либо теоретик ошибся, либо эксперименты неточны! Второе предположение следует отбросить, не колеблясь, потому что, даже если бы произошло невероятное и экспериментаторы ошиблись в 500 раз, их поправила бы многовековая практика обращения человека с кристаллами NаС1. Ведь если бы действительно их прочность была в согласии с теорией Борна, то не так просто было бы добыть в штольне соляную глыбу, орудуя киркой, и непростой была бы задача истолочь эту глыбу в порошок. В 500 раз экспериментаторы не могли ошибиться! И теоретик вряд ли ошибался так сильно: и мысли его логичны, и многие иные факты, следуя этим же мыслям, он объяснил очень успешно.

Правду следовало искать где-то в другом месте. Именно это и сделал Иоффе. Он рассуждал так: Борн, конечно же не ошибается, но рассчитывает он идеальную ситуацию когда одновременно рвутся все п связей. А если они рвутся не одновременно? Тогда, очевидно, разрушение будет происходить не мгновенно, так как связи рвутся последовательно, и при напряжении, значительно меньшем того, которое следует из теории.

Иоффе предположил, что на поверхности кристалла имеются микроскопические трещины. При нагрузках, меньших соответствующей «теоретической» прочности в устье трещины, в маленьком объеме кристалла могут возникнуть напряжения, при которых связи начнут рваться. А это значит, что трещина будет распространяться в глубь образца, пронижет его и расчленит на две части. Кристалл разрушится не потому, что в плоскости разрыва одновременно разрушились все связи, а потому, что последовательно разрушающиеся связи дали возможность трещине вырасти и расчленить кристалл.

Живой кристалл - _77.jpg

В то время, когда Иоффе осмысливал свои опыты, идея «трещины» носилась в воздухе. И не случайно почти одновременно была использована и Гриффитсом, и Иоффе.

То, о чем думал Иоффе, представляя механизм разрушения, можно отчетливо проиллюстрировать модельным опытом. Он прост, и его результаты не оставляют сомнений. На предметном столике микроскопа растягивается тонкая пластинка плексигласа, на боковом торце которой сделан острый и неглубокий надрез. Пластинка моделирует кристалл, надрез — трещину на его поверхности. В поляризованном свете можно отличить напряженные участки в плексигласе: чем больше напряжение, тем соответствующий участок темнее. Так вот, на последовательности кадров отснятого нами кинофильма видно, что в устье надреза напряжения максимальны и что пластинка разрушается вследствие движения напряженного устья надреза сквозь нее. Происходит это при напряжениях, значительно меньших тех, которые необходимы для разрушения пластинки без надреза.

Живой кристалл - _78.jpg

В упрощенном варианте подобный модельный опыт можно сделать не прибегая ни к микроскопу, ни к поляризованному свету, ни к кинокамере: порвать полоску бумаги, растягивая ее, намного легче, если предварительно сделать на ней маленький надрыв.

Живой кристалл - _79.jpg

Итак, гипотеза есть, нужен опыт, экзаменующий ее. Идею опыта подсказывает прямолинейная логика: если действительно поверхностные трещины — истинная причина почти пятисоткратного понижения прочности, то, растворив в воде тонкий слой кристалла, в котором есть трещины, мы вправе ожидать, что прочность кристалла возрастет в пятьсот раз. Логика это право дает, а скепсис возражает логике: неужели вода способна обусловить такой эффект?

Иоффе поставил следующий опыт. Он растягивал монокристальный образец каменной соли в условиях, когда часть образца была в воздухе, а часть омывалась теплой водой, которая растворяла и утоняла кристалл. Результат опыта оказался в согласии с предсказаниями логики: образец разрушился в сухой части, обнаружив прочность ≈ 45• 10е дин/см2. Мокрая, более тонкая часть образца выдерживала напряжения до величины 15• 109 дин/см2, которая не так уж далека от «теоретической прочности» 20 • 109 дин/см2.

1 ... 29 30 31 32 33 34 35 36 37 ... 45 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название