Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота читать книгу онлайн
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.
Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.
Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
При свободном движении, как мы только что сказали, вращательный момент остается неизменным. Ну, а если на тело действует сила? Расчет показывает, что изменение вращательного момента за одну секунду равно моменту силы.
Полученный закон без труда распространяется и на систему тел. Если сложить изменения вращательных моментов всех тел, входящих в систему, то сумма их окажется равной сумме моментов сил, действующих на тела. Значит, для группы тел справедливо положение: изменение суммарного момента импульса за единицу времени равно сумме моментов всех сил.
Закон сохранения вращательного момента
Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.
Забудем про поле тяготения – пусть бросок произведен в межзвездном пространстве.
Силы, действующие на камни, равны друг другу и направлены навстречу вдоль веревки (это ведь силы действия и противодействия). Но тогда и плечи обоих сил по отношению к любой точке будут одинаковы. Равные плечи и равные, но противоположные по направлению силы дают равные и противоположные по знаку моменты сил.
Суммарный момент сил будет равен нулю. Но отсюда следует, что будет равно нулю и изменение вращательного момента, т.е. что вращательный момент такой системы остается постоянным.
Веревка, связывающая камни, понадобилась нам для наглядности. Закон сохранения вращательного момента справедлив для любой пары взаимодействующих тел, какую бы природу ни имело это взаимодействие.
Да и не только для пары. Если изучается замкнутая система тел, то силы, действующие между телами, всегда можно разбить на равное количество сил действия и противодействия, моменты которых будут попарно уничтожаться.
Закон сохранения суммарного вращательного момента универсален, верен для любой замкнутой системы тел.
Если тело вращается вокруг оси, то его вращательный момент равен
N= mvr,
где m– масса, v– скорость и r– расстояние от оси. Выражая скорость через число оборотов в секунду п, имеем:
v= 2п nrи N= 2π mnr 2,
т.е. вращательный момент пропорционален квадрату расстояния от оси.
Сядьте на табуретку с вращающимся сидением. Возьмите в руки тяжелые гири, широко расставьте руки и попросите кого-нибудь привести вас в медленное вращение. Теперь быстрым движением прижмите руки к груди – вы неожиданно начнете вращаться быстрее. Руки в стороны – движение замедлится, руки к груди – движение ускорится. Пока из-за трения табуретка не перестанет вращаться, вы успеете несколько раз изменить свою скорость вращения.
Отчего это происходит?
Вращательный момент при неизменном количестве оборотов в случае приближения гирь к оси упал бы. Для того чтобы «скомпенсировать» это уменьшение, и увеличивается скорость вращения.
Успешно используют закон сохранения вращательного момента акробаты. Как акробат выполняет «сальто» – переворачивание в воздухе? Прежде всего – толчок от пружинящего настила или от руки партнера. При толчке тело наклонено вперед, и вес вместе с силой толчка создают мгновенный момент силы. Сила толчка создает движение вперед, а момент силы обусловливает вращение. Однако это вращение медленное, оно не произведет впечатления на зрителя. Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».
На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный вращательный момент придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение – балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение вращательного момента приводит к резкому увеличению скорости.
Вращательный момент как вектор
До сих пор речь шла о величине вращательного момента. Но вращательный момент обладает свойствами векторной величины.
Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 62 изображены два близких положения точки. Интересующее нас движение характеризуется величиной вращательного момента и плоскостью, в которой оно происходит. Плоскость движения заштрихована на рисунке – это площадь, пройденная радиусом, проведенным из «центра» к движущейся точке.
Можно объединить сведения о направлении плоскости движения и о величине момента импульса. Для этого служит вектор момента, направленный вдоль нормали к плоскости движения и равный по величине абсолютному значению момента. Однако это еще не все – нужно учесть направление движения в плоскости: ведь тело может поворачиваться около центра как по часовой стрелке, так и против нее.
Принято рисовать вектор момента импульса таким образом, чтобы, смотря против вектора, видеть поворот точки против часовой стрелки. Можно сказать и иначе: направление вектора момента импульса связано с направлением поворота так, как направление ввинчивающегося штопора связано с направлением движения его ручки.
Таким образом, если мы знаем вектор момента импульса, мы можем судить о величине момента, о положении плоскости движения в пространстве и о направлении поворота по отношению к «центру».
Если движение происходит в одной и той же плоскости, но плечо и скорость меняются, то вектор момента импульса сохраняет свое направление в пространстве, но меняется по длине. А в случае произвольного движения вектор импульса меняется как по величине, так и по направлению.
Может показаться, что такое объединение в одном понятии направления плоскости движения и величины вращательного момента служит лишь целям экономии слов. В действительности, однако, когда мы имеем дело с системой тел, которые движутся не в одной плоскости, мы получим закон сохранения момента только тогда, когда будем складывать вращательные моменты как векторы.
Это обстоятельство и показывает, что приписывание векторного характера вращательному моменту имеет глубокое содержание.
Вращательный момент всегда определяется относительно какого-либо условно выбранного «центра». Естественно, что его величина, вообще говоря, зависит от выбора этой точки. Можно, однако, показать, что если рассматриваемая нами система тел как целое покоится (ее полный импульс равен нулю), то вектор вращательного момента не зависит от выбора «центра». Этот вращательный момент можно назвать внутренним вращательным моментом системы тел.
Закон сохранения вектора момента импульса – третий и последний в механике закон сохранения. Однако мы не вполне точны, когда говорим о трех законах сохранения. Ведь импульс и момент импульса – это векторные величины, а закон сохранения векторной величины означает, что неизменной остается не только числовое значение величины, но и ее направление, иначе говоря, неизменными остаются три составляющих вектора по трем взаимно перпендикулярным направлениям в пространстве. Энергия – числовая величина, импульс – векторная, вращательный момент – также векторная. Поэтому точнее будет сказать, что в механике имеют место семь законов сохранения.
Волчки
Попробуйте поставить тарелку дном на тонкую трость и удержать ее в положении равновесия. Ничего не получится. Однако такой трюк является излюбленным номером китайских жонглеров. Им удается выполнить эту задачу, действуя одновременно с несколькими тросточками. Жонглер вовсе не старается удержать тонкие палочки в вертикальном положении. Кажется чудом, что тарелки, слегка опираясь на концы горизонтально наклоненных палок, не падают и почти висят в воздухе.