-->

Физика для всех. Движение. Теплота

На нашем литературном портале можно бесплатно читать книгу Физика для всех. Движение. Теплота, Китайгородский Александр Исаакович-- . Жанр: Физика / Учебники / Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Физика для всех. Движение. Теплота
Название: Физика для всех. Движение. Теплота
Дата добавления: 15 январь 2020
Количество просмотров: 276
Читать онлайн

Физика для всех. Движение. Теплота читать книгу онлайн

Физика для всех. Движение. Теплота - читать бесплатно онлайн , автор Китайгородский Александр Исаакович

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.

Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.

Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 24 25 26 27 28 29 30 31 32 ... 88 ВПЕРЕД
Перейти на страницу:

Обозначив буквами d 1и d 2плечи сил F 1и F 2, можем записать это условие так:

Физика для всех. Движение. Теплота - pic129_01.png

Из подобия заштрихованных треугольников следует, что d 2/ d 1= l 2/ l 1, т.е. точка приложения суммарной силы на соединительном отрезке делит расстояние между складываемыми силами на части l 1и l 2, обратно пропорциональные силам.

Обозначим буквой lрасстояние между точками приложения сил F 1и F 2. Очевидно, l= l 1+ l 2.

Решаем систему двух уравнений с двумя неизвестными:

F 1 l 1F 2 l 2= 0,

l 1+ l 2= l.

Получим:

Физика для всех. Движение. Теплота - pic129_02.png

По этим формулам мы можем найти точку приложения равнодействующей силы не только в том случае, когда силы смотрят в одну сторону, но и в случае с силами, направленными в противоположные стороны (как говорят, антипараллельными). Если силы направлены в разные стороны, то они имеют противоположные знаки, и равнодействующая равна разности сил F 1F 2, а не их сумме. Считая отрицательной меньшую из двух сил F 2, видим по нашим формулам, что l 1становится отрицательным. Это значит, что точка приложения силы F 1лежит не левее (как ранее), а правее точки приложения равнодействующей (рис. 55), при этом по-прежнему

Физика для всех. Движение. Теплота - pic129_03.png
Физика для всех. Движение. Теплота - pic129_04.png

Интересный результат получается при равных антипараллельных силах. Тогда F 1+ F 2= 0. Формулы показывают, что l 1и l 2становятся при этом бесконечно большими. Какой же физический смысл имеет это утверждение? Так как относить результирующую в бесконечность бессмысленно, то, значит, равные антипараллельные силы нельзя заменить одной. Такую комбинацию сил называют парой сил.

Действие пары сил нельзя свести к действию одной силы. Любые две параллельные или антипараллельные силы можно уравновесить одной, а пару сил – нельзя.

Разумеется, было бы неверным сказать, что силы, составляющие пару, уничтожают одна другую. Пара сил оказывает весьма существенное действие – вращает тело; особенность действия пары сил состоит в том, что она не дает поступательного движения.

В некоторых случаях может возникнуть вопрос не о сложении параллельных сил, а о разложении данной силы на две параллельные.

Физика для всех. Движение. Теплота - pic130_01.png

На рис. 56 изображены два человека, которые вместе несут на палке тяжелый чемодан. Вес чемодана раскладывается на обоих. Если груз давит на середину палки, то они оба испытывают одинаковую тяжесть. Если расстояние от точки приложения груза до рук, которые его несут, d 1и d 2, то сила Fразложится на силы F 1и F 2по правилу

Физика для всех. Движение. Теплота - pic130_02.png

Кто сильнее, тот должен взяться за палку поближе к грузу.

Центр тяжести

Все частички тела обладают весом. Поэтому твердое тело находится под действием бесчисленного количества сил тяжести. При этом все эти силы параллельны. Если так, то их можно сложить по правилам, которые мы только что рассматривали, и заменить одной силой. Точка приложения суммарной силы называется центром тяжести. В этой точке как бы сосредоточен вес тела.

Подвесим тело за одну из его точек. Как оно при этом расположится? Поскольку мы можем мысленно заменить тело одним сосредоточенным в центре тяжести грузом, ясно, что в равновесии этот груз будет лежать на вертикали, проходящей через точку опоры. Другими словами, в равновесии центр тяжести лежит на вертикали, проходящей через точку опоры, и находится в самом низком положении.

Можно расположить центр тяжести на вертикали, проходящей через ось, и над точкой опоры. Это удастся сделать с большим трудом и только благодаря наличию трения. Такое равновесие неустойчиво.

Мы уже говорили об условии устойчивого равновесия – потенциальная энергия должна быть минимальна. Так оно и есть в том случае, когда центр тяжести лежит ниже точки опоры. Любое отклонение повышает центр тяжести и, значит, увеличивает потенциальную энергию. Напротив, когда центр тяжести лежит над точкой опоры, то любое дуновение, выводящее тело из этого положения, ведет к уменьшению потенциальной энергии. Такое положение неустойчиво.

Вырежем из картона фигуру. Для того чтобы найти центр ее тяжести, подвесим ее два раза, приклеивая нитку-подвес сначала в одной, а потом в другой точке тела. Закрепим фигуру на оси, проходящей через центр тяжести. Повернем фигуру в одно положение, второе, третье… Мы обнаружим полное безразличие тела к нашим операциям. В любом положении осуществляется специальный случай равновесия. Его так и называют – безразличным.

Причина этого ясна – при любом положении фигуры заменяющая ее материальная точка находится в одном и том же месте.

В ряде случаев центр тяжести можно найти и без опыта и вычислений. Ясно, например, что центры тяжести шара, круга, квадрата, прямоугольника находятся в центрах этих фигур, так как они симметричны. Если мысленно разбить симметричное тело на частички, то каждой из них будет соответствовать другая, расположенная симметрично по другую сторону от центра. А для каждой пары таких частиц центр фигуры явится центром тяжести.

У треугольника центр тяжести лежит на пересечении медиан. Действительно, разобьем треугольник на узенькие полоски, параллельные одной из сторон. Медиана делит пополам каждую из полосок. Но центр тяжести полоски лежит, конечно, посередине полоски, т.е. на медиане. Центры тяжести всех полосок попадают на медиану, и когда мы будем складывать их силы веса, мы придем к выводу, что центр тяжести треугольника лежит где-то на медиане. Но это рассуждение верно в отношении любой из медиан. Поэтому центр тяжести должен лежать на их пересечении.

Но, может быть, вы не уверены, что три медианы пересекаются в одной точке. Это доказывается в геометрии; но наше рассуждение тоже доказывает эту интересную теорему. Ведь у тела не может быть несколько центров тяжести; а раз он один и лежит он на медиане, из какого бы угла мы ее ни провели, то значит, все три медианы пересекаются в одной точке. Постановка физического вопроса помогла нам доказать геометрическую теорему. Труднее найти центр тяжести однородного конуса. Из соображений симметрии ясно только, что центр тяжести лежит на осевой линии. Расчет показывает, что он находится на расстоянии 1/4 высоты от основания. Центр тяжести не обязательно находится внутри тела. Например, центр тяжести кольца находится в его центре, т.е. вне кольца.

Можно ли устойчиво поставить на стеклянной подставке булавку в вертикальном положении?

На рис. 57 показано, как это сделать. Небольшое сооружение из проволоки в виде двойного коромысла с четырьмя маленькими грузиками надо жестко прикрепить к булавке. Так как грузики подвешены ниже опоры, а вес булавки мал, то центр тяжести лежит ниже точки опоры. Положение устойчиво.

1 ... 24 25 26 27 28 29 30 31 32 ... 88 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название