Живой кристалл
Живой кристалл читать книгу онлайн
Замечательный учёный и не менее талантливый популяризатор науки Яков Евсеевич Гегузин в этой брошюре сумел совместить невозможное - легко и просто объяснить что происходит в кристаллах - ярких представителях "твёрдой" формы окружающей нас материи, и как можно изменять их свойства, влиять на прочность и жёсткость, увеличивать полезные качества - и всё это в интересной форме, когда приводимые математические и физические формулы не отталкивают неискушённого читателя, а наоборот в доступной форме показывают всё величие человеческой мысли и научного подхода, и именно из этих исследований родился тот технический и электронный прогресс, плодами которого мы сейчас пользуемся (начиная от компьютеров и кончая сотовым телефоном, полностью "построенными" на технологии "выращивания" специальных кристаллов!) Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.
Книга рассчитана на всех лиц, интересующихся современным естествознанием.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Речь идет о «мигающей вакансии», образе, который родился в представлении физика, исследовавшего влияние электронного облучения на изменение некоторых физических свойств рыхлых кристаллов. «Рыхлых» — это значит таких, в решетке которых очень много незамещенных позиций. «Рыхлых» — это значит обладающих такой решеткой, при которой в структуре много пустоты в виде межузельных пространств.
Впрочем, пожалуй, о том, что было вначале, удобнее будет рассказать в конце очерка, а сейчас расскажу о том, что такое мигающая вакансия.
Обсуждая «пару Френкеля», мы обратили внимание на то, что пока атом, перешедший из узла в междоузлие, не ушел от этого узла на расстояние более атомного, он может с большей вероятностью возвратиться в покинутый им узел. «Родственная связь» между атомом и узлом окончательно не прервана, и дефект «по Френкелю» еще не возник. Мыслимы, однако, ситуации или, точнее говоря, мыслимы такие кристаллы, в которых родственная связь между узлом и атомом, покинувшим узел, сохраняется и тогда, когда атом ушел на значительное расстояние от узла. Сохранив родственную связь, он охотно в этот узел возвращается. Представим себе такую ситуацию. Допустим, что, покинув узел, атом превратился в ион с зарядом е+, а узел при этом оказался имеющим заряд е- . Допустим, что атом, покинув узел, ушел от него на расстояние r0. Покинул — это значит выпрыгнул вследствие тепловой флуктуации или оказался вышибленным какой-либо частицей, которая влетела в кристалл, имея большую энергию. Неважно, как покинул, а важно, что покинул! Оказавшись на расстоянии r0 , ион испытывает кулоновское притяжение к оставленной им позиции с силой, определяемой законом Кулона: F1 = е2/εr02 (ε — диэлектрическая проницаемость кристалла). Под влиянием этой силы ион мог бы возвратиться в покинутую им позицию, этому, однако, препятствует необходимость преодолеть энергетический барьер, который обусловлен наличием новых соседей данного иона в решетке. Если высота этого энергетического барьера (U0, а расстояние между соседями в решетке a, то силу, удерживающую ион в его новом положении, легко вычислить, учтя, что произведение силы на путь равно выполненной работе (или затраченной энергии): F2а = U0 , т. е. F2 = U0 /а. Если окажется, что сила F2 < F1 , то, невзирая на тормозящее влияние новых соседей, ион все-таки возвратится в покинутую им позицию. Сравнивая величины F1 и F2 , легко убедиться, что родственная связь между ионом и вакантной позицией не будет нарушена, если величина r0 удовлетворяет условию
Сферическая область, радиус которой r* и в центре которой расположена вакантная позиция, является «зоной неустойчивости»; не выйдя за пределы этой зоны, ион возвратится в свою вакансию, как если бы он был связан с ней растянувшейся, но не лопнувшей резинкой. Выход иона за пределы «зоны неустойчивости» означает потерю им родственной связи с той позицией, в которой он прежде находился. В нашей модели эта ситуация означает, что резинка лопается. Радиус этой зоны неустойчивости может оказаться совсем не маленьким, если кристалл достаточно рыхлый, т. е. если высота энергетического барьера U0 достаточно мала. Например, если U0 ≈ 10-1 эВ = 1,6• 10-13 эрг, то при е = 4,8•10-10 г1/2•см3/2/с и а = 3• 10-8 см величина r* = 2,5• 10-7 см, т. е. почти в 10 раз превосходит межатомное расстояние. Как видите, r* не мало, родственная связь может оказаться реальной и на большом расстоянии.
Возвратимся к модели растянутой резинки, связывающей ион в зоне неустойчивости с вакансией. Для того чтобы резинка сработала, совсем не надо ожидать энергетической флуктуации для преодоления барьера U0 . Кулоновская сила (а в нашей модели растянутая резинка) возвратит атом в покинутый им узел, как говорят физики, «безактивационно»: атом перейдет из узла в междоузлие и сразу же возвратится в ранее им покинутый узел. При этом вакансия успеет лишь «мигнуть».
Для того чтобы оправдать образное название «мигающая вакансия», оценим время τυ , необходимое для возврата иона в вакансию. Очевидно,
τυ ≤ r*/υ
где υ — скорость движения возвращающегося атома. Так как его энергия, приобретенная под действием силы F1
Легко убедиться, что при разумных значениях величин, определяющих время τυ его значение ≈ 10-12 с, т. е., появившись, вакансия проживет 10-12 сек. без покинувшего ее иона, а затем ион возвратится восвояси, а вакансия при этом перестанет существовать. Она «мигнула» и исчезла. Она — мигнувшая вакансия. Они — мигающие вакансии. Так по праву первооткрывателя их назвал профессор В. М. Кошкин. По-моему, отлично назвал, предложил термин-модель, свободный от двусмысленности, подсказывающий очевидную, всем доступную и понятную аналогию. Мне приходил в голову и иной термин — «мерцающие вакансии». Он более поэтичен (ночное небо, звезды!), но значительно менее точен. А физический термин обретает ясность и привлекательность, если с привычными жизненными наблюдениями его удается связать легко, без натяжки.
В. М. Кошкин как-то рассказывал мне о том, что мысль о мигающих вакансиях появилась во время наблюдения за спокойной поверхностью реки, на которую падают капли дождя. Капля дождя оставляет след на водяной глади, который, мигнув, исчезает. Если поток дождя установившийся и однородный, следы от удара капель о воду распределяются по поверхности реки равномерно, подчиняясь законам случая. Оба признака мигающей вакансии проявляются: следы от капель возникают случайно и, мигнув, исчезают. Здесь, пожалуй, следует заметить, что созерцание дождя над рекой — любимое занятие очень-очень многих, а образ мигающей вакансии оно могло подсказать лишь тому, кто задолго до памятного ему дождя думал о точечных дефектах в кристаллах, о механизме их появления и исчезновения. Можно было бы здесь рассказать о том, какова концентрация «мигающих вакансий», и убедиться в том, что во многих рыхлых структурах их должно быть даже больше, чем обычных, стабильных, «немигающих». Оставим эти рассуждения за текстом. А здесь поговорим о физических эффектах и явлениях, в которых «мигающие вакансии» себя проявляют. Здесь, почти в конце очерка, как раз и уместно рассказать о том, что было у истоков рождения идеи.
Экспериментально было установлено, что кристаллы In2Те3 (они рыхлые!) обладают огромной радиационной стойкостью. Это значит, что, сколько бы их ни облучали потоком электронов или нейтронов, их свойства не меняются, дефекты в них не накапливаются. И их структура, и их омическое сопротивление, и многие другие свойства не сохраняют воспоминаний о том, что кристалл подвергался облучению, как не помнит поверхность реки о некогда упавшей на нее дождевой капле. Для физика — результат очень странный, повод для раздумий, для технолога-материаловеда — результат изумительный, так как он означает, что имеется радиационно-устойчивый материал, из которого можно изготавливать изделия, не боящиеся облучения.