Квантовая хромодинамика: Введение в теорию кварков и глюонов
Квантовая хромодинамика: Введение в теорию кварков и глюонов читать книгу онлайн
Книга испанского физика Ф. Индурайна представляет собой курс современной теории сильных взаимодействий — квантовой хромодинамики. Она содержит практически весь основной материал, необходимый для ознакомления с важнейшими результатами, полученными в рамках пертурбативной КХД, и овладения вычислительными методами теории. Материал изложен с приведением всех промежуточных выкладок и с большим педагогическим мастерством, что позволяет использовать книгу в качестве учебного или справочного пособия. Книга предназначена для научных работников, студентов и аспирантов физических факультетов, специализирующихся в области физики элементарных частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Отметим, что отображение F не обязательно должно быть линейным. Таким же образом мы будем трактовать и функционалы от нескольких функций F[ƒ,g,…]. Функционалы можно рассматривать как обобщение понятия обычной функции в следующем смысле. Разобьем пространство значений59) x на N ячеек, и пусть в каждой ячейке находится единственное значение xj. Тогда функционал F[ƒ] представляет собой предел, к которому стремится функция FN(ƒ1,…,ƒj,…), где ƒj≡ƒ(xj), при стремлении размера ячейки к нулю. Производная ∂FN/∂ƒj определяется формулой
59) Мы берем это пространство таким, что оно имеет конечный размер L. Иначе необходимо выполнить дополнительный предельный переход L→∞
∂FN(ƒ1,…,ƒj…)
∂ƒj
=
lim
ε→0
FN(ƒ1,…,ƒj+ε,…) - FN(ƒ1,…,ƒj,…)
ε
,
т.е. Она может быть получена сдвигом ƒi→ƒi+εδij. Поэтому мы определяем функциональную производную как предел
δF[ƒ]
δƒ(y)
=
lim
ε→0
F[ƒ+εδy]-F[ƒ]
ε
,
где δy есть δ-функция, обращающаяся в бесконечность в точке y: δy(x)=δ(x-y). Важный частный случай представляет собой функционал, задаваемый интегралом
F[ƒ]=
∫