Введение в электронику
Введение в электронику читать книгу онлайн
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 34–28. Внешние цепи сдвигового регистра для обслуживания и чтения данных.
34-3. Вопросы
1. Каковы функции сдвигового регистра?
2. Что является важной особенностью сдвигового регистра?
3. Из каких логических элементов состоят сдвиговые регистры?
4. Где чаще всего применяются сдвиговые регистры?
5. Какие арифметические операции может выполнять сдвиговый регистр, и как он их выполняет?
РЕЗЮМЕ
• Триггер — это бистабильный мультивибратор, на выходе которого может быть либо низкий, либо высокий уровень сигнала.
• Триггеры бывают следующих типов:
а. RS;
б. тактируемый RS;
в. D;
г. JK.
• Триггеры используются в цифровых цепях в качестве счетчиков.
• Защелка — это временный буфер памяти.
• Счетчик — это логическая цепь, которая может считать последовательность чисел или состояний.
• Один триггер может сосчитать последовательность из двух чисел, 0 и 1.
• Максимальное число двоичных состояний счетчика может зависеть от количества триггеров, содержащихся в счетчике.
• Счетчики могут быть либо синхронными, либо асинхронными.
• Асинхронные счетчики называют счетчиками пульсаций.
• Синхронные счетчики тактируют все каскады одновременно.
• Сдвиговые регистры используются для временного хранения данных.
• Сдвиговые регистры состоят из соединенных вместе триггеров.
• Сдвиговые регистры могут перемещать данные влево или вправо.
• Сдвиговые регистры используются для преобразования данных из последовательной формы представления в параллельную, и наоборот.
• Сдвиговые регистры могут выполнять умножение и деление.
Глава 34. САМОПРОВЕРКА
1. Опишите, как RS-триггер изменяет состояния с высокого на выходе Q на высокое на выходе Q-.
2. В чем главное отличие D-триггера от тактируемого RS-триггера?
3. Из каких компонентов состоит счетчик, и как он сконструирован?
4. Нарисуйте схему счетчика, который считает до 10 и после этого повторяет счет.
5. Чем сдвиговый регистр отличается от счетчика?
6. Какие функции выполняет и для чего может использоваться сдвиговый регистр?
Глава 35. Комбинационные логические схемы
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать функции шифраторов, дешифраторов, мультиплексоров, сумматоров, вычитающих устройств и компараторов.
• Различать схематические обозначения шифраторов, дешифраторов, мультиплексоров, сумматоров, вычитающих устройств и компараторов.
• Перечислить применения комбинационных логических схем.
• Начертить таблицы истинности для различных комбинационных логических схем.
Комбинационные логические схемы — это схемы, состоящие из комбинаций элементов И, ИЛИ, инверторов и образующие более сложные схемы. Выход комбинационных логических схем является функцией состояний их входов, типов использованных элементов и их соединений между собой. Наиболее часто встречающимися комбинационными логическими схемами являются шифраторы, дешифраторы, мультиплексоры и арифметические схемы.
Шифратор — это комбинационная логическая схема, имеющая один или более входов и создающая многоразрядный двоичный выход. Шифрование — это процесс преобразования любого символа клавиатуры или числа, поданного на вход в кодированный выход в двоичном или двоично-десятичном коде.
На рис. 35-1 изображен десятично-двоичный шифратор, называемый шифратором на «4». Его функция состоит в преобразовании отдельной цифры (от 0 до 9), поданной на вход, в четырех разрядный двоичный код на выходе. Это означает, что если на клавиатуре нажата цифра 4, то на вход 4 будет подан высокий уровень, или 1, а на выходе появится 4-разрядный код 0100.
Рис. 35-1. Десятично-двоичный шифратор.
На рис. 35-2 изображен десятично-двоичный приоритетный шифратор. Функция приоритета означает, что если две клавиши нажаты одновременно, то шифратор выдаст двоично-десятичный код, соответствующий большей десятичной цифре. Например, если на шифратор подать одновременно цифры 2 и 5, то он выдаст двоично-десятичный код 0101, соответствующий цифре 5. Шифраторы этого типа встроены в одну интегральную микросхему и состоят примерно из 30 логических элементов.
Рис. 35-2. Десятично-двоичный шифратор с приоритетом.
На рис. 35-3 изображено логическое обозначение шифратора с приоритетом. Шифраторы этого типа используются для преобразования десятичных чисел с клавиатуры в двоично-десятичный код 8421. Десятично-двоичный шифратор и десятично-двоичный приоритетный шифратор всегда можно найти там, где есть ввод с клавиатуры. Это калькуляторы, клавиатуры компьютеров, электронные пишущие машинки и телетайпы.
Рис. 35-3. Логическое обозначение десятично-двоичного шифратора с приоритетом.
35-1. Вопросы
1. Что такое шифрование?
2. Что делает шифратор?
3. В чем разница между обычным шифратором и приоритетным шифратором?
4. Нарисуйте логическое обозначение десятично-двоичного приоритетного шифратора.
5. Где применяются десятично-двоичные шифраторы?
Дешифратор — это одна из наиболее используемых комбинационных логических схем. Он преобразует сложный двоичный код в распознаваемую цифру или символ.
Например, он может дешифровать число в двоично-десятичном коде в одну из десяти возможных десятичных цифр. Выход такого дешифратора используется для работы цифрового отсчета или дисплея. Дешифратор этого типа называется дешифратор 1 на 10 или дешифратор 4 линии-на 10-линий.
На рис. 35-4 изображены десять элементов НЕ-И, требующихся для дешифрации 4-разрядного числа в двоично-десятичном коде в десятичную цифру. Когда на всех входах элемента НЕ-И высокий уровень, на его выходе 0. На всех других выходах элементов НЕ-И дешифратора — высокие уровни. Для того, чтобы каждый раз не рисовать все логические элементы цепи, используется обозначение, показанное на рис. 35-5.
Рис. 35-4. Двоично-десятичный дешифратор.
Рис. 35-5. Логическое обозначение двоично-десятичного дешифратора.
Два других типа дешифраторов — это дешифратор с восемью выходами и дешифратор с шестнадцатью выходами (рис. 35-6).
Рис. 35-6. Логические обозначения дешифраторов 1 на 8 (А) и 1 на 16 (Б).