Введение в электронику
Введение в электронику читать книгу онлайн
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Реверсивный счетчик может считать в любом направлении в пределах заданной последовательности. Его также называют двунаправленным счетчиком. Направление счета можно изменить на обратное в любой точке последовательности счета. Его обозначение показано на рис. 34–20.
Рис. 34–20. Логическое обозначение реверсивного счетчика.
На рис. 34–21 показана логическая схема реверсивного двоично-десятичного счетчика. Входы JK-триггеров управляются входом переключения направления счета через логические элементы.
Рис. 34–21. Логическая схема двоично-десятичного реверсивного счетчика.
Счетчики могут быть остановлены после любой счетной последовательности с помощью логического элемента или комбинации логических элементов. С выхода логического элемента подается обратная связь на вход первого триггера в счетчике пульсаций. Если обратная связь подает 0 на вход JK первого триггера (рис. 34–22), то это препятствует переключению первого триггера и, следовательно, останавливает счет.
Рис. 34–22. Низкий уровень, поданный на вход JK первого триггера, препятствует его переключению и останавливает счет.
34-2. Вопросы
1. Для чего служит счетчик?
2. Каков размер счетной последовательности восьмиразрядного счетчика?
3. Как работает асинхронный счетчик?
4. Чем синхронный счетчик отличается от асинхронного счетчика?
5. Как можно остановить счетчик в любой момент счета?
Сдвиговый регистр — это последовательная логическая цепь, широко используемая для временного хранения данных. Данные могут быть загружены в сдвиговый регистр и удалены оттуда либо в параллельной, либо в последовательной форме. На рис. 34–23 показаны четыре различных метода загрузки и чтения данных в сдвиговом регистре. Благодаря их способности перемещать данные по одному биту из одного места хранения в другое, сдвиговые регистры полезны при выполнении различных логических операций.
Рис. 34–23. Методы загрузки и чтения данных в сдвиговом регистре.
Сдвиговые регистры состоят из соединенных между собой триггеров. Триггеры обладают всеми функциями, необходимыми для регистра: их можно установить в исходное состояние, предустановить, переключить или управлять уровнями 1 или 0. На рис. 34–24 изображен основной сдвиговый регистр, состоящий из четырех триггеров. Он называется четырехразрядным сдвиговым регистром, так как состоит из четырех двоичных элементов хранения информации.
Рис. 34–24. Сдвиговый регистр, составленный из четырех триггеров.
Важной особенностью сдвигового регистра является то, что он может перемещать данные вправо и влево по отношению к исходному положению разрядов. Это эквивалентно умножению или делению записанного числа на определенный множитель. Данные сдвигаются на один разряд при подаче каждого тактового импульса. Тактовые импульсы полностью управляют работой сдвигового регистра.
На рис. 34–25 изображен типичный 4-разрядный сдвиговый регистр, состоящий из JK-триггеров.
Рис. 34–25. Типичный сдвиговый регистр, составленный из JK-триггеров.
Последовательные данные и их дополнения подаются на JK входы триггера А. Остальные триггеры соединены каскадно, то есть выходы одного подсоединены ко входам следующего. Переключатели всех триггеров соединены вместе, и по этой линии подаются тактовые импульсы. Поскольку все триггеры переключаются одновременно — цепь является синхронной. Кроме того, входы очистки каждого триггера соединены вместе и образуют линию сброса. Данные, поданные на вход, сдвигаются триггерами на один разряд по каждому тактовому импульсу. Например, если на вход сдвигового регистра подано двоичное число 1011, и подан сдвиговый импульс, то число, записанное в сдвиговом регистре, выдвигается на один разряд и теряется, тогда как новое число вдвигается на один разряд. На рис. 34–26 показана последовательность совершаемых действий при записи числа в сдвиговый регистр.
Рис. 34–26. Хранение числа в сдвиговом регистре.
Одним из наиболее частых применений сдвигового регистра является преобразование данных из последовательной формы представления в параллельную, и наоборот. На рис. 34–27 показано как данные в параллельном коде могут быть загружены в сдвиговый регистр. Для работы с данными в параллельном коде входные данные предустанавливаются в сдвиговом регистре. Когда данные находятся в сдвиговом регистре, они могут быть последовательно выдвинуты, как было описано ранее.
Рис. 34–27. Загрузка данных в сдвиговый регистр при использовании параллельного входа.
Для преобразования данных из последовательной формы представления в параллельную, они сначала помещаются в сдвиговый регистр с помощью тактовых импульсов.
Когда данные находятся в сдвиговом регистре, выходы отдельных триггеров контролируются одновременно, и данные направляются по назначению.
Сдвиговые регистры могут выполнять арифметические операции, такие как умножение или деление. Сдвиг двоичного числа, хранящегося в сдвиговом регистре, вправо, дает такой же эффект, что и деление этого числа на некоторую степень 2. Сдвиг двоичного числа, хранящегося в сдвиговом регистре, влево, дает такой же эффект, что и умножение этого числа на некоторую степень 2. Сдвиговые регистры предоставляют простой и недорогой способ выполнения умножения и деления чисел.
Сдвиговые регистры часто используются для временного хранения данных. Сдвиговые регистры, используемые для хранения данных, способны хранить одно или более двоичных слов. Для сдвиговых регистров, применяемых для этих целей, существуют три требования: во-первых, он должен быть в состоянии принимать и хранить данные, во-вторых, быть способен находить и читать эти данные по команде и, в-третьих, когда данные прочитаны, они не должны быть потеряны. На рис. 34–28 изображены внешние цепи, позволяющие сдвиговому регистру читать и обслуживать данные, хранящиеся в нем. Когда на линии чтения/записи высокий уровень, она позволяет поместить в сдвиговый регистр новые данные. После того, как данные помещены в регистр, уровень на линии чтения/записи становится низким, открывая элемент 2, позволяющий данным перезаписаться во время их чтения.