Зеленая революция

На нашем литературном портале можно бесплатно читать книгу Зеленая революция, Фюкс Ральф-- . Жанр: Экология / Экономика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Зеленая революция
Название: Зеленая революция
Дата добавления: 16 январь 2020
Количество просмотров: 398
Читать онлайн

Зеленая революция читать книгу онлайн

Зеленая революция - читать бесплатно онлайн , автор Фюкс Ральф

Возможно ли новое экономическое чудо, другой капитализм и другая энергетическая политика в постиндустриальное время? Что способно обратить вспять спад мировой экономики, учитывая, что возвращение к ресурсоориентированной модели экономического развития уже недопустимо? Изменение климата, сокращение пахотных земель, угроза нехватки воды, истощение природных источников указывают нам на признаки саморазрушения прежнего экономического уклада. Пора искать альтернативы, ориентированные на экологическую устойчивость! Книга «зеленого» немецкого политика и публициста Ральфа Фюкса — ответ на этот призыв. Автор подробно рассматривает спектр выходов из создавшейся ситуации. Объекты его исследования — экогорода и экостроительство самого ближайшего будущего, новые инструменты для сельского хозяйства и нового типа промышленности, перспективные экономические механизмы. Несмотря на сложность проблемы, книга написана доступным, занимательным языком с неожиданными поворотами и литературными аллюзиями.

 

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 35 36 37 38 39 40 41 42 43 ... 66 ВПЕРЕД
Перейти на страницу:

Бионика — сочетание биологии и технологии. Полуофициальное определение, данное в 1993 г. Союзом немецких инженеров, звучит так: «Бионика как научная дисциплина занимается технической реализацией конструктивных, методологических и эволюционных принципов, на которых базируются биологические системы». Все больше институтов и компаний работают над вопросом, как перевести на язык новых технологий и продукции, решения, предложенные биологией. Только в Германии исследовательское сообщество Biokon объединяет более 70 университетов и научно-исследовательских институтов, а также ученых, работающих в этой сфере [168]. Мы стоим в начале пути, где нас ждут открытия, которые могут быть сделаны при условии лучшего понимания биологических организмов и систем. В этом отношении бионика соревнуется с массовым исчезновением животных и растений под воздействием грубого вмешательства человека в природу — кто кого. Подсчитано, что ежедневно вымирает более 100 по большей части неизученных видов. При этом мы теряем не поддающийся точному исчислению потенциал, который можно было бы использовать в медицине, продовольственной отрасли, при производстве биологического сырья и т. д. На сегодня изучена лишь малая часть биологического богатства Земли. В этом многообразии таится неисчерпаемый потенциал для разработки близких к природе способов производства будущего, опирающихся на синергию человека и природы. За миллиарды лет эволюция создала вещества, структуры, процессы обмена веществ, которые в соответствующих экологических условиях функционируют безупречно. При этом речь идет не об изолированном рассмотрении отдельных организмов, а о более глубоком понимании системных процессов в биологическом мире: оптимальное соотношение затрат и приобретений, высокая приспособляемость к меняющимся условиям окружающей среды, самоорганизация сложных систем и симбиотические связи между отдельными живыми существами и средой их обитания.

Люди всегда что-то заимствовали у природы. Классический пример — меховая одежда, защищающая от мороза. Современная бионика систематизирует процесс обучения у природы, исследуя, как результаты биологической эволюции можно перевести на язык технологий. При этом речь идет не о простом копировании с натуры, а о понимании функциональных аналогий. Все начинается с вопроса «Что дает возможность животным и растениям показывать свои невероятные достижения?». Несколько примеров:

В 1976 г. биологу Вильгельму Бартлотту бросилось в глаза, что листья некоторых растений не бывают грязными. Объяснение этому явлению он нашел под микроскопом: вода на шероховатой поверхности собирается в капли и, захватывая частички грязи, просто скатывается с листа. Так был открыт «эффект лотоса». По этому принципу были созданы краски и кровельные материалы для самоочищающихся поверхностей, которые давно уже вошли в обиход. К настоящему времени это революционное открытие, считающееся родоначальником современной бионики, позволило разработать более 200 вариантов применения [169].

Как мухи ползают по гладким стенам? Оказывается, у них на лапках множество крохотных волосков, подчиняющихся закону молекулярного притяжения. Поэтому они могут противостоять гравитации. Невероятный пример цепкости демонстрирует геккон: уцепившись за поверхность всего одним пальцем, он может удерживать ведро воды. Использование этих механизмов открывает новые возможности для технологии изготовления материалов и креплений.

Транспортные суда, имеющие в носовой части утолщение, похожее на нос дельфина, экономят до 10 % топлива. Благодаря особым изгибам судам проще преодолевать сопротивление воды.

Плакоидная чешуя акул может служить образцом для покрытия корпуса судов. Она предотвращает налипание ракушек и морских растений и понижает сопротивление воды, что существенно сокращает не только расходы на топливо (экономия до 30 000 долларов в день), но и выбросы CO2 и других вредных веществ.

Авиация тоже многое позаимствовала у природы. Уже сам факт, что человек научился летать, классический пример бионики. Так называемые винглеты, загнутые законцовки крыла самолета, сокращают расход керосина. И здесь экономичность соседствует с экологичностью.

Шерстинки у белого медведя полые, благодаря чему солнечный свет легче проникает к коже. Такое строение шерсти позволяет долго удерживать тепло. Применяя этот принцип при теплоизоляции зданий, можно эффективнее использовать пассивную солнечную энергию.

Несмотря на то, что пористые, полые кости сами по себе весят очень немного, по структуре они очень крепкие. Опираясь на этот принцип, можно создавать высокопрочные и одновременно легкие материалы.

В сельском хозяйстве применение химических инсектицидов могут заменить биологические методы защиты растений. При помощи репеллентов можно не подпускать вредных насекомых к полям (так называемая техника отпугивания). В виноделии применяют особо изощренный (даже коварный) способ, чтобы предотвратить размножение листоверток: при помощи специальных дозаторов на виноградник наносится искусственный половой аттрактант самок, при этом самцы теряются и не могут найти настоящих самок. Спаривание прерывается. Швейцарцы защищают до 60 % своих виноградников и фруктовых плантаций от вредных насекомых именно при помощи этой техники «сбивания с толку» [170].

И в энергетике будущего перевод биологических процессов на язык технологических методов сулит большие перспективы. О фотосинтезе мы поговорим чуть ниже. Еще один пример — производство водорода из целлюлозы. Нашими учителями в данном случае стали термиты, питающиеся преимущественно целлюлозой. В процессе пищеварения под воздействием симбиотических микроорганизмов образуется водород. По расчетам профессора Андреаса Винцинскаса, руководителя проекта «Биоресурсы» при Институте им. Фраунгофера, из целлюлозы, содержащейся в обычном листе бумаги формата А4, термиты могут произвести примерно 2 л водорода, на котором автомобиль с топливным элементом может проехать до 10 км — без выхлопных газов и выбросов CO2 [171]. Если удастся поставить этот процесс на промышленную основу, технология топливных элементов станет намного эффективнее.

Биороботы

Новое направление в бионике — биоробототехника — использует технологии, полученные благодаря биологическим разработкам в деле создания роботов. Ученым Калифорнийского университета удалось сконструировать шестиногого робота, который умеет ходить, взбираться по вертикальным поверхностям и огибать выступы, возникающие при обрушении различных построек, — бесценное качество для роботов-спасателей. В основу разработки легли феноменальные свойства тараканов. Эти насекомые, конечно, не самые приятные соседи, но они обладают удивительной способностью бегать со скоростью, в 50 раз превышающей длину их тела в секунду, передвигаясь при этом вверх ногами. Высокоскоростные камеры наконец-то позволили объяснить этот акробатический трюк. На видеозаписи видно, как таракан крошечной загогулиной на задних лапках цепляется за край поверхности, после чего разворачивается на 180° и перебрасывает себя на нижнюю плоскость. При этом насекомое подвергается давлению, в 3–5 раз превышающему силу гравитации. Другие животные-акробаты, использующие этот фокус, — ящерицы из семейства гекконов. Они могут в долю секунды исчезнуть под крупными листьями. Совместно со специалистами по производству роботов ученые попытались создать крылатого шестиногого робота-таракана, обладающего такими способностями (dynamic autonomous sprawled hexapod), снабдив его задние конечности приспособлением, похожим на застежку-липучку, а движения запрограммировав по аналогии с его природными прототипами [172]. Сходное изобретение создали ученые Университета Осаки: их механический паук умеет взбираться по наклонным плоскостям, лестницам, подлезать под низкие препятствия. «Арахнобота» можно использовать, например, в ходе поисковых работ после землетрясений. Созданием подобных роботов-пауков занимается и Институт производственных технологий и автоматики им. Фраунгофера [173].

1 ... 35 36 37 38 39 40 41 42 43 ... 66 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название