Зеленая революция
Зеленая революция читать книгу онлайн
Возможно ли новое экономическое чудо, другой капитализм и другая энергетическая политика в постиндустриальное время? Что способно обратить вспять спад мировой экономики, учитывая, что возвращение к ресурсоориентированной модели экономического развития уже недопустимо? Изменение климата, сокращение пахотных земель, угроза нехватки воды, истощение природных источников указывают нам на признаки саморазрушения прежнего экономического уклада. Пора искать альтернативы, ориентированные на экологическую устойчивость! Книга «зеленого» немецкого политика и публициста Ральфа Фюкса — ответ на этот призыв. Автор подробно рассматривает спектр выходов из создавшейся ситуации. Объекты его исследования — экогорода и экостроительство самого ближайшего будущего, новые инструменты для сельского хозяйства и нового типа промышленности, перспективные экономические механизмы. Несмотря на сложность проблемы, книга написана доступным, занимательным языком с неожиданными поворотами и литературными аллюзиями.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Второе главное направление исследований в области фотосинтеза касается способности природных организмов преобразовывать солнечный свет и углекислый газ в углеродные соединения. Выращенные в биореакторах водоросли и бактерии способны впитывать углекислый газ и создавать из него вещества, из которых можно синтезировать биодизель и этанол. Один пример: «Перспективный метод, при помощи которого из углекислого газа… можно производить бутанол, разработали ученые Калифорнийского университета. Джеймс Льяо и его коллеги культивировали генно-модифицированный вариант бактерии ralstonia eutropha, насыщая воду углекислым газом. При подаче электричества из обычной солнечной батареи углекислый газ вступает в реакцию с водой, образуя муравьиную кислоту. Микробы поглощают муравьиную кислоту, преобразовывая ее в бутанол. Для синтеза биотоплива можно использовать алкоголь, имеющий относительно высокую энергетическую плотность. Правда, процесс еще недостаточно эффективен, но движется в нужном направлении, поскольку в будущем таким способом можно будет аккумулировать солнечное электричество в углеводородах» [186]. Подобные методы уже можно применять в промышленных масштабах. Лидируют в производстве топлива при помощи биологических организмов американские военные. И дело вовсе не в заботе о климате, скорее их интересует возможность достижения независимости от импорта нефти и сокращения длинных транспортных цепочек. Уже прошли первые пробные полеты на биокеросине [187].
Третье направление — оптимизация протекающего в растениях фотосинтеза с целью стимуляции их роста и повышения урожайности. Оптимизация природы означает в данном случае более эффективное использование солнечной энергии для производства питательных веществ, поскольку количество солнечной энергии, впитываемой растениями и преобразуемой в углеродные соединения, в значительной степени определяет скорость роста и размеры листьев, корней, плодов и семян. Как правило, зеленые растения используют от силы 3 % поступающего солнечного света. Скорость фотосинтеза зависит от вида растений. Например, у кукурузы, пшена, сахарного тростника, китайского камыша есть специальный клеточный аппарат для преобразования солнечного света в водород и создания сахаристых веществ при участии CO2, благодаря чему в этих растениях фотосинтез протекает намного быстрее, чем, скажем, в рисе, у которого подобный механизм не развит, хотя и заложен генетически. Если при помощи целенаправленных генетических модификаций его удастся запустить, урожайность риса можно будет значительно повысить. Над этим работает филиппинский международный исследовательский консорциум, координируемый Международным институтом исследования риса (International Rice Research Institute, IRRI) [188]. Финансирует проект Фонд Билла и Мелинды Гейтсов. С немецкой стороны в этом объединении участвует Институт эволюционной и молекулярной биологии растений при Университете Дюссельдорфа. Развитие у риса механизма высокоэффективного фотосинтеза (фотосинтез-С4) не только повысит его урожайность примерно на 50 %, но и позволит существенно понизить потребление воды в процессе выращивания.
Нельзя забывать, что рис служит основой питания примерно половины населения Земли. В настоящее время 1 га рисового поля в Азии кормит около 27 человек. К 2050 г. риса с 1 га предположительно должно хватать на 43 человека. Потребность в земле и воде растет вместе с населением. Рис относится к злакам, требующим интенсивного орошения. Около 30 % всей пресной воды на Земле идет на выращивание риса [189]. Ожидаемые последствия изменения климата повлекут за собой дополнительную нагрузку на сельское хозяйство. Повышение урожайности и засухо- и жароустойчивости риса имеет важнейшее значение для продовольственной безопасности в Азии. Ответ на вопрос, какие методы и пути напрямую ведут к этой цели, должна дать практика. В своей книге «Фактор пять» Эрнст Ульрих фон Вайцзеккер рассказывает о новом сорте риса, который получил название «Закаленный» (Hardy) и, как утверждается, дает высокие урожаи даже в условиях засухи. Ученые из Института биоинформатики в Вирджинии встроили в рис ген кардаминопсиса, который отвечает за высокоэффективное использование воды, вследствие чего у растений активизировался процесс фотосинтеза и сократилась потребность в воде. В итоге новый сорт риса в засуху дал на 50 % больше урожая [190].
Рост биопроизводства при помощи фотосинтеза повышает и потенциал биомассы в качестве энергоносителя и сырья, дополнительный эффект — очищение атмосферы от CO2. Шансы и риски, связанные с этими процессами, должны всесторонне обсудить политики, ученые, промышленники и представители гражданского общества.
CO2: убийца климата как сырье
Двуокись углерода, химическое соединение углерода и кислорода, — это газ, который не горит, не имеет цвета и запаха. Он возникает в процессе клеточного дыхания живых существ и при брожении органической материи. В этом смысле углекислый газ является естественной составной частью воздуха. В атмосфере углекислый газ абсорбирует часть отражаемого Землей солнечного излучения и тем самым способствует созданию знаменитого парникового эффекта, который поднимает среднюю температуру на Земле с –18 до +15 °C, благодаря чему только и возможна органическая жизнь. Свою репутацию убийцы климата он приобрел лишь с момента начала сжигания угля и нефти в промышленных масштабах, в результате чего в атмосфере стало накапливаться дополнительное количество углекислого газа. Если в атмосфере повышается концентрация абсорбентов тепла, то парниковый эффект усиливается. Средняя температура поверхности Земли повышается. Природные явления, такие как циклические колебания солнечного излучения, могут усилить или ослабить этот эффект, тем не менее в долгосрочной перспективе он оказывает влияние на климат Земли. С начала индустриализации концентрация CO2 в атмосфере повысилась с 280 до 380 ppm, с 1880 по 2010 г. средняя температура поверхности Земли выросла на 0,9 °C, причем скорость увеличения этого показателя растет. 2000–2009-е гг. стали с большим отрывом самым теплым десятилетием с начала измерений, на втором месте — 1990-е гг. Если тенденция продолжится, ситуация может выйти из-под контроля, поскольку глобальное потепление не линейный и не равномерный процесс. Если температура повысится на 2 °C, может начаться экспоненциальный рост. Ученые говорят о переломных моментах в процессе изменения климата. Сюда относится, например, высвобождение гигантских масс метана вследствие таяния вечномерзлых грунтов в Канаде и России или таяние льдов в Заполярье и на Гималаях. Тогда Земля начнет абсорбировать больше солнечного тепла. Кроме того, исчезновение ледяного покрова Гренландии или Антарктиды грозит повышением уровня моря на несколько метров [191].
Поэтому стабилизация климата подразумевает сокращение выбросов углекислого газа до объемов, которые в состоянии абсорбировать биосфера. Во избежание хаотизации климатических процессов наш экономический уклад должен стать углеродно нейтральным не позднее 2050 г. Самый перспективный путь — замена ископаемых источников энергии возобновляемыми: солнце, ветер и биоэнергия вместо угля и нефти. Поскольку сейчас уровень выбросов парниковых газов стремительно повышается, мы должны найти возможности уменьшить концентрацию CO2 в атмосфере. Наиболее эффективным на этом пути будет повышение абсорбирующей способности природных поглотителей углерода, иными словами, необходимо высаживать леса и рекультивировать земли. В последние годы ведутся интенсивные работы в области вторичной переработки CO2 и его использования в качестве сырья. Если таким способом удастся на стабильной основе вытягивать CO2 из атмосферы или заменить ископаемые источники энергии углекислым газом, нагрузка на климат уменьшится. Это может послужить интересной альтернативой технологии геологического секвестра углерода (Carbon Capture and Storage, CCS): зачем с таким трудом загонять углекислый газ в подземные накопители, если его можно использовать как полезное вещество? Журнал Wirtschaftswoche поместил публикацию о нескольких проектах, в настоящий момент находящихся в разработке [192]. Это не пустые слова, особенно если принять во внимание «игроков». Министерство энергетики США с 2010 г. инвестировало более 100 млн долларов в исследование и разработку проектов по использованию CO2. Министерство научных исследований ФРГ вложило 100 млн евро. Среди участников и такие химические и технологические компании, как Bayer, Evonik, Siemens и BASF, энергетические компании RWE и EnBW. Заведующая кафедрой устойчивого развития Лионского университета Алессандра Квадрелли считает, что на этом пути можно сократить выбросы парниковых газов до 10 %. Это серьезные цифры, которые, однако, говорят о том, что вторичная переработка CO2 не альтернатива отказу от выбросов углерода. Утверждая, что вторичная переработка углекислого газа «может избавить нас от страха перед убийцей климата», авторы журнала безмерно преувеличивают. Отказ от выбросов важнее вторичной переработки. Использование CO2 в качестве полезного вещества лишь дополнительная мера.