-->

Рассказы о биоэнергетике

На нашем литературном портале можно бесплатно читать книгу Рассказы о биоэнергетике, Скулачев Владимир Петрович-- . Жанр: Биология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Рассказы о биоэнергетике
Название: Рассказы о биоэнергетике
Дата добавления: 15 январь 2020
Количество просмотров: 308
Читать онлайн

Рассказы о биоэнергетике читать книгу онлайн

Рассказы о биоэнергетике - читать бесплатно онлайн , автор Скулачев Владимир Петрович

 

О становлении и борьбе идей в биоэнергетике, о том, каким образом ученым удалось заглянуть в мир функционирующих белковых молекул, рассказывает автор — член-корреспондент Академии наук СССР.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 16 17 18 19 20 21 22 23 24 ... 44 ВПЕРЕД
Перейти на страницу:

Чтобы убедиться в правоте этой, казалось бы, очевидной посылки (если не протеолипосомы, значит, измерительная мембрана, ведь больше ничего в нашей системе просто нет), мы добавили сульфат магния в омывающий искусственную мембрану раствор, не содержащий протеолипосом. Спустя час в тот же раствор внесли протеолипосомы и измерили фотоэффект. Если дело в мембране, то свет должен бы вызвать образование большой разности потенциалов.

Не тут-то было! Перед нами вновь был эффект-пигмей! Однако со временем он увеличился и через час-полтора достиг огромных размеров.

Что же это получается? В системе всего два компонента: протеолипосомы и искусственная мембрана, и оба они, отдельно взятые, устойчивы к действию сульфата магния. Тем не менее сульфат магния действует, да так мощно! А может быть, секрет его магического влияния надо искать в каком-то эффекте, требующем одновременного присутствия и протеолипосом и мембраны?

В дальнейшем оказалось, что сульфат магния можно заменить хлористым магнием, но не хлористым калием. Это указывало, что действующее начало — ион магния.

Известно, что двухвалентные катионы магния и кальция нейтрализуют отрицательные заряды на поверхности фосфолипидных мембран, образуя прочные комплексы с анионами фосфатных групп фосфолипида. Именно эти отрицательные заряды предотвращают слипание фосфолипидных пузырьков друг с другом. Быть может, в нашей системе магний вызывал слипание протеолипосом друг с другом?

Но для чего в таком случае искусственная мембрана? Нет, это не объяснение.

А вдруг протеолипосомы склеиваются с искусственной мембраной, ведь она тоже состоит из фосфолипидов? Тогда возникающий со временем высокий фотопотенциал мог бы в принципе иметь ту же природу, что в опытах Л. Драчева: бактериородопсин протеолипосом, приклеившихся к искусственной мембране, генерирует на свету разность потенциалов, которая регистрируется нашим вольтметром. В результате мембрана, предназначенная для регистрации количества анионов ФКБ-, измеряет вовсе не этот параметр, а непосредственно работу бактериородопсина как электрического генератора.

Проверить такое предположение не составило большого труда. Мы просто повторили опыт, но без анионов ФКБ-. Это был, так сказать, суп из топора: система для измерения проникающих анионов содержала все компоненты, необходимые, чтобы произвести такое измерение, за исключением самих анионов. И что же: со временем развился мощный фотоэффект. Его величина оказалась гораздо большей, чем в первых опытах Л. Драчева, когда мембрану образовывали из смеси бактериородопсина и фосфолипидов.

Последующее разбирательство показало, что в системе «протеолипосомы — искусственная мембрана» бактериородопсин всегда ориентирован таким образом, что он транспортирует протоны из омывающего раствора внутрь приклеенных к мембране протеолипосом. Так мы получили систему, где из двух противоположно включенных биологических фотобатарей осталась одна.

Используя новый метод, нам удалось добиться фотопотенциалов до 0,3 вольта, что превышает величину, необходимую для энергообеспечения синтеза АТФ.

Затем последовали годы работы по проверке других белков — генераторов протонного потенциала, совершенствованию метода встраивания белков в мембрану, стабилизации самой мембраны. Выдающиеся качества Л. Драчева как виртуозного физика-экспериментатора позволили разработать универсальный метод, позволяющий измерять перенос протонов внутри мембраны за время, равное одной десятимиллионной доле секунды.

Сегодня опыт Л. Драчева воспроизведен в десятках других лабораторий у нас в стране и за рубежом. Электрическая часть хемиосмотической гипотезы получила свое окончательное подтверждение.

Последняя капля

О своей догадке, что бактериородопсин может быть генератором протонного потенциала, мне рассказал У. Стокениус в феврале 1973 года в Нью-Йорке. Он разложил свои графики на столе, креслах и необъятной двуспальной кровати в номере отеля и спросил, что я, как митчельянец, обо всем этом думаю. Вскоре выяснилось, что он не меньший митчельянец, чем я, и что мы думаем с ним одинаково: открыт новый тип фотосинтеза, где вместо хлорофилла работает бактериородопсин.

Из Нью-Йорка я отправился в Итаку, к Э. Ракеру, и рассказал ему о данных Стокениуса. По реакции собеседника я понял, что все это он слышит впервые. Помнится, у меня даже были сомнения, имею ли я право рассказывать о бактериородопсине без разрешения Стокениуса, и я даже порывался позвонить ему в Сан-Франниско. Но Ракер отговорил меня, сказав, что сейчас в Калифорнии четыре часа утра и вряд ли Стокениус будет в восторге от звонка.

Рассказы о биоэнергетике - _21.jpg

Последняя капля

А пять месяцев спустя Ракер уже докладывал на очередном международном биохимическом конгрессе о своей совместной работе со Стокениусом. Это был знаменитый «опыт с химерой».

Ракер и Стокениус взяли АТФ-синтетазу из митохондрий сердца быка, бактериородопсин из галофильных бактерий и фосфолипиды из соевых бобов и получили новый тип составленных из веществ всех трех царств живого мира: животного, бактериального и растительного. Протеолипосомы при освещении синтезировали АТФ.

Бычья АТФ-синтетаза катализировала фотофосфорилирование! Это был результат, чудовищный с точки зрения сторонника химической или конформационной схемы сопряжения.

Даже самым яростным противникам хемиосмотической теории было ясно, что бактериородопсин не может образовывать каких-либо химических соединений предшественников АТФ. Не могла идти речь и об обмене конформационной энергией между бактериородопсином и бычьей АТФ-синтетазой. Для этого потребовался бы тесный контакт двух названных белков, а было известно, что бактериородопсин занимает обширные участки (бляшки до 0,5 микрона в длину) в мембране бактерии, причем никаких других белков в этих бляшках не обнаруживается. Бактериородопсин делает свое дело без помощников.

«Оппозиция сдается!» писал мне в эти дни из Америки П. Хинкль.

Да, опыт Ракера и Стокениуса был воистину последней каплей, склонившей чашу весов в пользу хемиосмотической гипотезы.

В те дни мне довелось посетить Митчела в его Глинн Хаузе. Помню покрытые нежнейшей, только что взошедшей травой холмы, аллею вечнозеленых деревьев, ведущую к дому, и сам дом: освещенная жилая часть и затемненные лабораторные комнаты. В те январские дни 1974 года Англия пыталась бороться с энергетическим кризисом, сократив рабочую неделю. Митчел был этим страшно недоволен и грозился поставить на ближайшем холме ветряк, чтобы стать независимым от государственной энергетики.

Мне отвели большую комнату с нереально высоким потолком и огромными окнами, за которыми дремал сад. Был полный штиль.

Пытаясь уснуть, я обратил внимание на боль в ушах. Меня охватило какое-то беспокойство. Что-то было не так. Я не сразу сообразил, что все дело в тишине. В доме было абсолютно тихо. На милю вокруг ни жилья, ни шоссе, ни железной дороги. Я понял, что, пожалуй, впервые в жизни нахожусь в полной тишине. Пришло на ум, что Г. Лундегард, предтеча Митчела, тоже жил в уединенном доме, где размещалась его лаборатория... Уснуть мне удалось, лишь положив под голову ручные часы.

Глава 9. Признание

Принцип Митчела

В хронологии своих встреч с Митчелом я обнаружил правильную периодичность: познакомившись в 1966-м, мы затем виделись раз в два года, по четным годам. Лишь после 1974 года наступил четырехлетний перерыв, и автора хемиосмотической гипотезы я повстречал вновь только в 1978-м, на съезде в Дрездене, где ему вручали высшую награду Федерации европейских биохимических обществ — медаль Г. Кребса. Это был уже не первый знак официального признания. За два-три года Митчел стал членом Королевского общества Великобритании, получил золотую медаль международного научного фонда США, премию Филдберга, а также и другие премии в Бостоне, в Нью-Йорке.

1 ... 16 17 18 19 20 21 22 23 24 ... 44 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название